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Chapter 9 (additional material)
Multiple regression

• This presentation includes additional 
material on data analysis using 
multiple regression
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Why Use Multiple Regression?
• Regression models produce estimates which 

are both statistically optimal and mutually 
standardized

• Stratification (or adjustment through 
stratification) will have problems with small 
numbers if it is necessary to control for more 
than 2 or 3 confounders



Some Reasons for Caution 
With Regression
• The gain in statistical efficiency occurs 

because the model makes certain 
assumptions about the structure of the data.  
These assumptions may be wrong

• You have less control and understanding of 
the analysis when you use a regression.  It is 
easy to make mistakes.  Always do a simple 
stratified analysis first
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Regression
 E x p o s e d  N o n - e x p o s e d  
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We can achieve the same result by using a 
regression model.  We define a dichotomous 
exposure variable (Χ1) as:

Exposed:  Χ1 = 1

Non-exposed:  Χ1 = 0

Rate (I) Exposure (Χ1) 

0.02 1 

0.01 0 
 

 



We want to model the rate (I) as a function of 
exposure (Χ1).

One possibility is:

but this is less convenient statistically

)(110 EbbI +Χ+=



It is more convenient to fit the model:

)(ln 110 EΧbb(I) ++=



We could fit the model using simple linear regression 
(least squares).   However, the least-squares 
approach does not handle Poisson or dichotomous 
outcome variables well, as they are not normally 
distributed.  Instead, the model parameters are 
estimated by the method of maximum likelihood.  
This is based on the likelihood function which 
represents the probability of observing the actual 
data as a function of the unknown parameters 
(b0,b1,b2, …).  The values of the parameters which 
maximize the likelihood function are the maximum 
likelihood estimates of the parameters
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Suppose we fit this model and obtain estimates 
for b0+b1



The 95% CI for ln(RR) is:

45.2limit upper  95%                            

63.1 limit lower  95%    124.0)(

00.2     693.0  e.g.
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This general approach can be used in a variety 
of situations.

For cohort studies we fit the model

This is Poisson data, and we use Poisson 
regression to estimate the rate ratio
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For case-control studies we fit the model

This is logit (binomial) data and we use 
logistic regression to estimate the odds ratio

K+Χ+=− 110  ))1/(ln( bbPP



We can use the same approach to control for 
potential confounding variables:

Age <50 Age≥50

E Ē E Ē
Deaths 6,000 3,000 12,000 6,500

Person-
years

400,000 450,000 500,000 500,000



We define

We then run the model

Χ1=1 (exposed)

=0 (non-exposed)

Χ2=1 (Age≥50)

=0 (Age <50)
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Then in the exposed group:

And in the non-exposed group:

and we proceed as before
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Multiple Levels
• We can also represent multiple 

categories of exposure (or a confounder):  
suppose we have four levels of exposure:  
none, low, medium, high

• We need three variables to represent 
four levels of exposure:



We fit the model:
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We can thus estimate the risk for each level 
relative to the lowest level of exposure.

We can control for confounding in a similar 
way, eg by defining five variables to represent 
six age-groups



Rather than categorizing exposures it is 
possible to use each inidividual’s exact 
exposure and to represent exposure with a 
single continuous variable.

However, the use of a continuous variable 
assumes that exposure is exponentially related 
to disease risk, ie, that each additional unit of 
exposure multiplies the disease risk by a 
certain amount.



In other words, it assumes that the dose-
response curve looks like this:



This assumption will not be optimal if the true 
dose-response curve is linear, or some other 
non-expondential shape.

There is little loss of statistical power providing 
it is possible to use at least 4 categories, and 
categorization is thus preferable as it provides 
for a greater understanding of the findings.



Appropriate methods do exist for modeling the 
close-response curve in an appropriate fashion 
once the appropriate shape of the curve has 
been determined.  This generally involves 
taking the relative risk estimates of each of the 
individual exposure categories and performing 
an ordinary linear regression where each 
estimate is weighted by the inverse of its 
variance.





Confounders
The same considerations aply to the definition 
of confounders.
For example, if there are 5 age-groups then we 
need 4 dummy variables [one of the age-
groups, usually the youngest one, is taken as 
the baseline “reference” category which is not 
represented by a variable.]



The model would then look like this:
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Once again, it is preferable to use categorical 
rather than continuous variables to adjust for 
confounders.  However, the issue is not so 
important, since the intention is simply to “adjust 
for the confounder rather than model its dose-
response relationship.
However, if our aim is simply to control 
confounding (rather than to estimate the dose-
response pattern for the confounding factor) then 
an continuous variable (for the confounder) may 
be more statistically optimal without 
compromising validity
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Interaction (Joint Effects)

Smoking (Χ2)

Yes No

Yes R11 R01

No R10 1.0

Asbestos
(Χ1)

Suppose that we wish to derive the 
following table:



The usual model (without an interaction 
term) is:

However, to get the above table, we need to 
fit the following model:

Smoking) ((Asbestos)               
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This can be used to derive the following:
Asbestos Smoking

Group Χ1 Χ2 Model RR

Neither 0 0 b0 1.0

Asbestos 
only

1 0 b0+b1 eb1

Smoking 
only

0 1 b0+b2 eb2

Both 1 1 b0+ b1+ b2+b3 eb1+b2+b3



Thus, the joint effect is obtained by

321321 bbbbbb eeee ⋅⋅=++



Note that if b3=0 then the joint effect is just 
eb1.eb2.  Thus, b3 provides a test for 
interaction.  However, it is important to 
emphasize that b3 only provides a test for a 
departure from the mulitplicative 
assumptions of the model.  It does not test 
for a departure from additivity.



Unfortunately, calculating the confidence 
interval for the joing effect is also 
complicated.  We use:
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There is a much easier way to get the same 
results.  Just define three new variables as 
follows:
Χ1 =1 if asbestos but not smoking

=0 otherwise

Χ2=1 if smoking but not asbestos

=0 otherwise

Χ3=1 if both

=0 otherwise



Then fit:

This will give us the separate and joint 
effects directly without any need to consider 
the Variance-covariance matrix.

      b b )ln( 3322110 Χ+Χ+Χ+=Χ bb
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Cohort study Case control study
Numerator Cases Cases
Denominator Person-Years Controls
Effect 
estimate

Rate ratio Odds ratio

Stratified 
analysis

SRR (or Mantel-
Haenzsel)

Mantel-Haenszel

Modelling Poisson regression Logistic regression
Model ln(I)=b0+ b1 + Χ1+… Ln(P/(1-P))= b0+ b1 + Χ1+…

Data 
structure

Poisson Logit (binominal)

Programs Stata or SAS Stata or SAS



Use of Multiple regression
• Don’t use a regression model unless there is 

a good reason to do so
• The most common reason to use a model is 

because you need to simultaneously adjust 
for 4 or more confounders

• Most analyses can be handled with a simple 
stratified analysis and the Mantel-Haenszel 
summary odds ratio or rate ratio



Use the regression model which is 
appropriate for the data you have:  don’t make 
the data adapt to the model

Poisson regression is the appropriate model 
for cohort studies with incidence rates

Logistic regression is the appropriate model 
for case-control data
There is no reason to use other models, 
except in special circumstances



Evaluating Confounding
• Suppose we are measuring the association 

between an exposure and a disease (eg asbestos 
and lung cancer)

• We want to control for all potential confounders 
(eg, age, gender, smoking)

• Ideally we would run
– A univariate model (asbestos only)
– A ‘full’ model (all potential confounders and asbestos



If the RR estimate for asbestos changes when 
we add the other variables to the model then 
there was confounding by some or all of these 
other variables (age, gender, smoking). 

Ideally we want to control for all potential 
confounders and we want to run the “full” 
model.



Example Asbestos
Model Variables b1 RR SE(b1)

1 Asbestos 0.693 2.0 0.24
0.693 2.0 0.24

No confounding

1.099 3.0 0.25

Confounding

0.693 2.0 0.47

Multicollinearity

1.099 3.0 0.47

Confounding
Multicollinearity

2 Asbestos
+age
+sex
+smoking

2 Asbestos
+age
+sex
+smoking

2 Asbestos
+age
+sex
+smoking

2 Asbestos
+age
+sex
+smoking
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Regression Diagnostics
• Multicollinearity
• Influential data points
• Goodness of fit



Multicollinearity
The major concern of regression diagnostics is 
(or should be) the potential problem of 
multicollinearity.  This occurs when there is a 
strong correlation between one or more 
“confounders” and the main exposure.  This will 
cause the main exposure estimate to be 
unstable and its SE will become much larger 
when the “confounder” is included in the model 
(this is the best way to detect multicollinearity)



• If the source of multicollinearity is not a 
strong risk factor (and therefore not a strong 
confounder) then it should not be included in 
the model

• If the source of multicollinearity is a strong 
risk factor then it should be included in the 
model and the problem of multicollinearity is 
insoluble



Influential Data Points
• These are data points which strongly 

influence the maximum likelihood estimates
• For example, if one person with a very heavy 

exposure lives to be 100, then this will have a 
big effect on the effect estimate in an 
analysis using a continuous exposure 
variable



Such points can be identified by deleting each 
data point in turn to see whether the effect 
estimate changes substantially.

However, the problem is completely avoided 
when using categorical rather than continuous 
exposure variables.  This is another reason 
for using categorical variables.



Goodness of Fit
• Goodness of fit tests involve grouping the data 

and comparing the observed number of cases in 
each group with the number predicted by the 
model

• In Poisson regression the data is already grouped 
and the model supplies the deviance (which will 
provide a valid goodness of fit test under certain 
conditions)

• In logistic regression it is necessary to construct 
the groups and the test yourself



Note
• Goodness of fit tests assess whether the 

model “predicts the observed data well”.  
They do not assess confounding of the 
main exposure variable.  It is possible for 
a model to fit poorly but still estimate the 
exposure effect correctly

• It is also possible for a model to fit well 
but still estimate the main exposure 
effect poorly
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Approaches to Regression
“Traditional” statistical approaches involve 
using models for prediction:

• The aim is to achieve a model that “fits well”
• The aim is also to achieve a model that is 

“parsimonious” in that it fits well with the 
minimum number of variables



Approaches to Regression
Thus in “traditional” statistical approaches
decisions on adding or deleting variables are 
based on:

• Statistical significance
• Goodness of fit

Interaction may be of interest if including 
interaction terms improves the goodness of fit



Approaches to Regression
Epidemiological approaches involve using 
models for

• Effect estimation
• Etiologic understanding

There is usually one main exposure and 
several potential confounders



Approaches to Regression
Thus, in epidemiological approaches

• The main exposure should always be in 
the model

• Decisions on adding potential confounders 
should be based on whether the main 
exposure effect changes



Approaches to Regression
Thus, in epidemiological approaches

• A variable that “adds significantly” to the 
model may not be a confounder

• A variable that does not “add significantly” 
may be a confounder



Approaches to Regression
Thus, in epidemiological approaches

• All potential confounders should be controlled 
if possible

• Adding variables that are strongly correlated 
with exposure will result in multicollinearity
making the model unstable



Approaches to Regression
Thus in epidemiological approaches: decisions 
on adding or deleting variables are based on 
the need to

• Control confounding
• Avoid multicollinearity

Interaction is of lesser concern unless there 
are strong a priori to examine it



Approaches to Regression
• The most important issue is often to consider 

the time pattern of exposure and effect
• We may use various deductive etiologic 

models to summarize exposure information 
and to assess how well the different 
exposure models fit the data
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