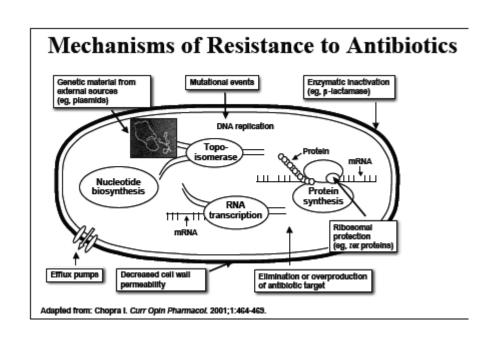


Infección por microorganismos Gram negativos.

Resistencia y Perspectiva terapéutica.

Dr. Luis Alberto Solar Salaverri.

Servicio de Infectología.


Hospital Pediátrico Universitario Centro Habana.

Lista de choque de la Resistencia. (IDSA) 2006.

- MRSA.
- E.Coli.
- Klebsiella spp.
- Acinetobacter baumannii.
- Pseudomona aeruginosa.
- Aspergillus spp.
- Enterococus faecium.

Talbot GH, Bradley J, Edwards JE, et al. Bad bugs needs drugs: an update on the development pipeline from the antimicrobial availability task force. Clin Inf Dis 2006; 42: 657-68.

Mecanismos de Resistencia.

ESBL.

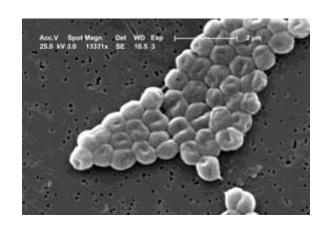
- Enzimas con alta eficacia para hidrolizar betalactámicos de amplio espectro.
- Primer reporte Alemania 1985.
- Distribución mundial en menos de 10 años.
- Consecuencias alarmantes en morbilidad
 mortalidad.

Resistencia en Gram negativos. ESBL - EL GRAN PROBLEMA.

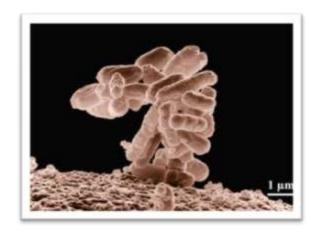
RESISTENCIA. COMPLEJIDAD.

- -La síntesis de ß-lactamasas puede ser constitutiva, es decir que se realiza de manera constante y sin que sea necesaria la presencia del antibiótico en el medio o inducida por la presencia de penicilinas o cefalosporinas
- -Hasta la fecha han sido identificadas más de 200 de tales enzimas, siendo las más reconocidas TEM-1, TEM-2, SHV-1 y BRO-1.
- -Betalactamasas de espectro extendido. E.Coli, Klebsiella, P. Mirabilis, Acinetobacter.
- -Metalobetalactamasas. P. aeruginosa, Serratia, Enterobacter.

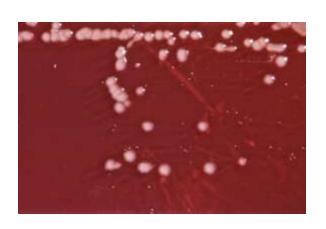
FACTORES DE RIESGO DE ESBLS.


-Hospitalización reciente.

-Enfermedades crónicas debilitantes. (Diabetes, IRC, Inmunodepresión)

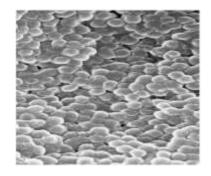

-Uso de Cefalosporinas de 3ra generación y Quinolonas.

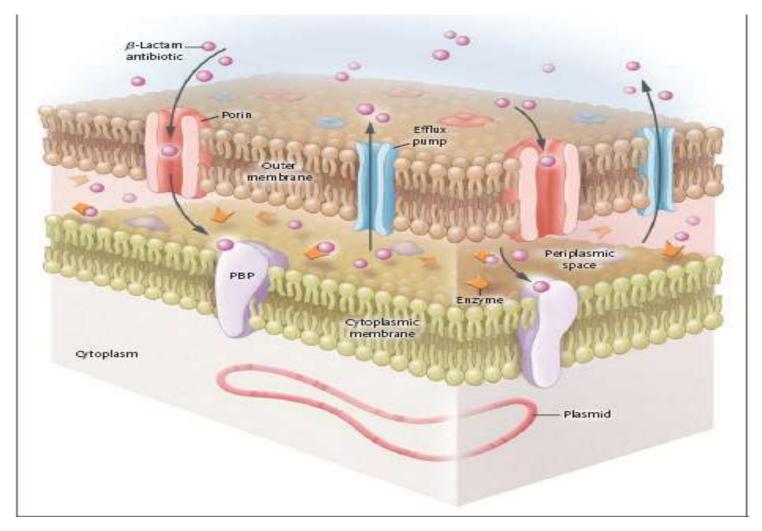
-ITU recurrentes.


Bacterias productoras de ESBL.

A. baumannii.

E. Coli.


P. aeruginosa.


K. pneumoniae.

-Complejo Acinetobacterbaumannii – calcoaceticus

Problemático y multirresistente.

Acinetobacter. Mecanismos de resistencia.

Muñoz-Price LS, Weinstein RA. Acinetobacter Infection . N Engl J Med 2008;358:1271-81.

Acinetobacter Baumannii. Epidemiología.

Comunidad.

- Raro en población general:
 - colonización cutánea5%
 - Muy raro en cavidad oral y tracto respiratorio
- Pero: continuos reportes de infección adquirida en la comunidad.

Hospital.

- Resistencia a antimicrobianos
 - Colonización faríngea 7-18%
 - Colonización traqueostomIa 45%
- Capacidad de supervivencia de Acinetobacter spp
 - 4 veces más que otros BGN
 - Supervivencia a diferentes T^a y pH
- Extensa contaminación del medio y materiales próximos a pacientes colonizados/infectados:
 - Ropa de cama y utensilios personales
 - Material sanitario diverso
 - Suelo, conductos de aires, etc.

Resistencia de gram negativos en Cuba.

Aproximación.

Resistencia bacteriana UTIP 2004-05. Hospital Dr. Antonio Luaces. (Ciego de Ávila)

Gérmenes	KZ	CTX	CRO	AK	G	CIP	R	T
S. aureus	59.0	18.1	18.1	22.7	22.7	27.2	40.9	45.4
Enterobacter sp.	80.9	42.8	66.6	38.0	57.1	47.6	66.6	61.9
Escherichia coli	73.6	21.0	31.5	31.5	42.1	26.3	31.5	42.1
Pseudomona sp.	81.8	18.1	54.5	9.0	27.2	27.2	9.0	27.2
Klebsiella sp. 🤇	87.5	25.0	50.0	25.0	25.0	25.0	37.5	25.0
Acinetobacter sp.	85.7	57.1	(71.4)	28.5	28.5	(57.1)	42.8	28.5
Proteus sp.	40.0	40.0	25.0	20.0	40.0	40.0	40.0	20.0
N. meningitidis	66.0	33.3	33.3	33.3	66.0	33.3	33.3	33.3
Citrobacter sp.	100	50.0	50.0	50.0	50.0	50.0	100	50.0

KZ – Cefazolina CRO – Ceftriaxona G – Gentamicina

R – Cloranfenicol

CTX- Cefotaxima AK – Amikacina CIP-Ciprofloxacino T – Tetraciclina

DRA. MERCEDES FERRER MACHÍN DR. LEMIS DUEÑAS ROSQUETE

ESBL. Ciudad Habana - Cuba.

- E. Coli (298 cepas) y Klebsiella spp (28 cepas).
- E. Coli 10% de aislamientos.
- Klebsiella spp 36% de aislamientos.
- Excelente estabilidad de Carbapenémicos.

Antimicrobiano.	Klebsiella spp.(%)	E.Coli.(%)
Meropenem	0	0
Imipenem	0	0
Cefepime	50	77.41
Gentamicina	30	41.93
Tobramicina	60	87.07
Ciprofloxacina.	30	35.48
Amox/Ac. Clav.	90	90.32

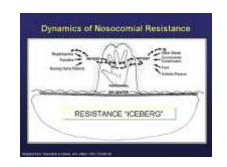
González Mesa L et al. Identificación fenotípica y molecular de b-lactamasas de espectro extendido TEM y SHV producidas por Escherichia coli y Klebsiella spp. aislados clínicos de hospitales. Rev Cubana Med Trop 2007;59(1)

Resistencia Hospital Hermanos Ameijeiras.

	1997	2002	2007
Antibióticos	% de resistencia	% de resistencia	% de resistencia
Amikacina	22.2	44.76	55.61
Cefotaxime	31.0	84.13.	92.31
Ceftazidime	17.6	51.97	96.55
Ceftriaxone	29.0	73.96	94.21
Ciprofloxacina	6.01	50.00	72.84
Gentamicina	31.0	62.40	72.99
Meropenem	-	33.33	55.61

	1997	2002	2007
Antibióticos	% de resist	% de resistencia	% de resistencia
Amikacina	19.2	38.24	28.95
Gentamicina	37.5	43.09	31.39
Ceftazidima	33.3	23.53	67.46
Cefotaxima	59	88.24	66.67
Ciprofloxacina	2.44	16.82	33.48
Ceftriaxone	52.68	78.21	91.30
Meropenem	-	0	38.61

Acinetobacter spp.


	1997	2002	2007
Antibióticos	% de resistencia	% de resistencia	% de resistencia
Amikacina	17.8	20.58	19.72
Gentamicina	39.3	43.54	55.43
Ceftazidima	20.6	58.06	74.01
Cefotaxima	28.8	46.60	80.00
Ciprofloxacina	5.2	26.00	72.24
Ceftriaxone	34.3	44.89	63.24
Meropenem	-	0	7.43

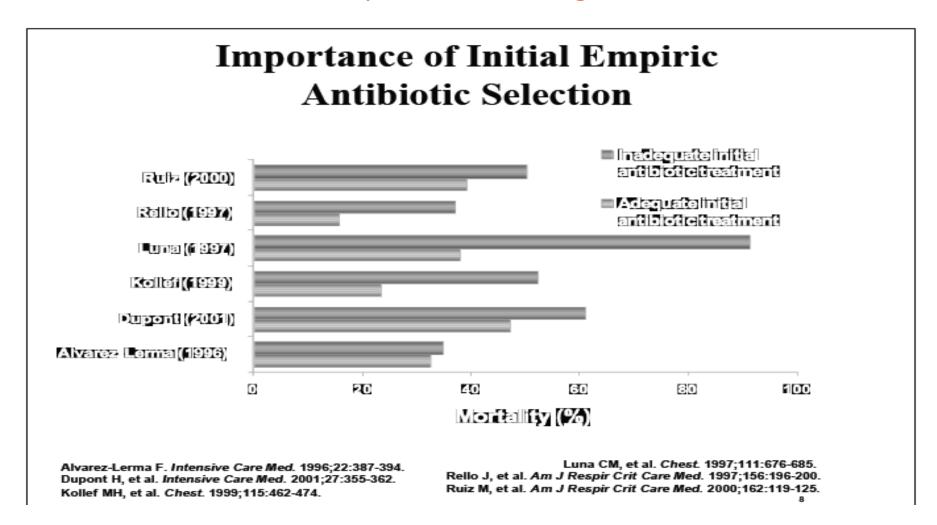
P. aeruginosa

E. Coli.

Datos presentados Primera Reunión APUA-CUBA 2008.

PANRESITENCIA.

- -Múltiples reportes de P. aeruginosa y Acinetobacter sp resistentes a todos los antimicrobianos disponibles comercialmente.
- -Solo sensibles a Colistina/Polimixin B.
- -Mecanismo mediado por sobre-expresión de Amp C, disminusión de OprD2, sobreregulación de bombas de efusión.
- -Los brotes pueden estar asociados a microorganismos relacionados genotípicamente.


Consecuencias clínicas de la resistencia antibiótica (multirresistencia).

- Fracasos de tratamientos convencionales .
- Mayor uso de "otros antibióticos" (tratamientos inadecuados).
- Periodo de enfermedad más prolongado.
- Incremento de complicaciones asociadas.

... hay una relación directa entre el desarrollo de resistencia antimicrobiana (multi-R) y una mayor mortalidad y morbilidad, en comparación con microorganismos no resistentes.

El antibiótico inicial. Importancia.

Papel del Infectólogo.

Silvano E, Leone S.Antimicrobial treatment for Intensive Care Unit infections including the role of the infectious disease specialist. Intern Journ of Antim Agents. 2007.29:494-500

POLIMIXINA. ULTIMO RECURSO.

- -Polipéptido cationico que interactúa con el lipopolisacarido de la membrana externa.
- -Incrementa la permeabilidad de la membrana y escape de material celular con muerte.

POLIMIXINAS. RIESGO-BENEFICIO

Antibióticos bactericidas. (Polimixinas A-E).

Polimixina E o Colistina.

Detergentes de la membrana bacteriana.

Amplio espectro contra Gram negativos:

- *A.baumannii.
- P.aeruginosa.
- **❖**S.maltophilia.
- ☐ Menos efectos adversos en estudios actuales.

Enoch DA, Birkett CI, Ludlan HA. Non-fermentative Gram-negative bacteria. Intern Journ Antimicrob Agents. 2007 (suppl 3):33-41

AMINOGLUCÓSIDOS.¿OTRA VEZ?

- -Incremento en resistencia de gram negativos a Betalactámicos y Quinolonas.
- -Revisión de su relación dosis toxicidad.
- -Capacidad bactericida concentración dependiente.
- CIM ≥ 2 mg/l mala respuesta terapéutica.
- -Dosis c/24 horas si daño renal.
- -Necesidad de relación tiempo concentración.
- -Individualizar el paciente. 5mg/kg/día.

Drusano GL et al. Back to the Future: Using Aminoglycosides Again and How to Dose Them Optimally. **CID 2007:45:753-60**

Es necesario insistir en la enseñanza sobre como utilizar los poderosos antimicrobianos de forma optima para prolongar su longevidad mientras exploramos otras alternativas para el control de las infecciones.

Louis B Rice MD. Interscience Conference on Antimicrobial Agents and Chemotherapy 2007.