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Sample size calculations for randomised trials seem
unassailable. Indeed, investigators should properly
calculate sample sizes and adequately describe the key
details in their published report. Research methodol-
ogists describe the approaches in books and articles.
Protocol committees and ethics review boards require
adherence. CONSORT reporting guidelines clearly
specify the reporting of sample size calculations.1,2

Almost everyone agrees.
An important impetus to this unanimity burst on the

medical world more than a quarter of a century ago. A
group of researchers, led by Tom Chalmers, published a

landmark article detailing the lack of statistical power in
so-called negative randomised trials published in
premier general medical journals.3 In Chalmers’ long
illustrious career, he published hundreds of articles.
This article on sample size and power received many
citations. Paradoxically, that troubled him.4 He regarded
it as the most damaging paper that he had ever
coauthored. Why? We will describe his concerns later, so
stay tuned. 

Components of sample size calculations 
Calculating sample sizes for trials with dichotomous
outcomes (eg, sick vs well) requires four components:
type I error (�), power, event rate in the control group,
and a treatment effect of interest (or analogously an
event rate in the treatment group). These basic
components persist through calculations with other
types of outcomes, except other assumptions can be
necessary. For example, with quantitative outcomes and
a typical statistical test, investigators might assume a
difference between means and a variance for the means. 

In clinical research, hypothesis testing risks two
fundamental errors (panel 1). First, researchers can
conclude that two treatments differ when, in fact, they
do not. This type I error (�) measures the probability of
making this false-positive conclusion. Conventionally,
� is most frequently set at 0·05, meaning that
investigators desire a less than 5% chance of making a
false-positive conclusion. Second, researchers can
conclude that two treatments do not differ when, in fact,
they do—ie, a false-negative conclusion. This type II
error (�) measures the probability of this false-negative
conclusion. Conventionally, investigators set � at 0·20,
meaning that they desire less than a 20% chance of
making a false-negative conclusion.

Power derives from � error. Mathematically, it is the
complement of � (1–�) and represents the probability of
avoiding a false-negative conclusion. For example, for
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�=0·20, the power would be 0·80, or 80%. Stated
alternatively, power represents the likelihood of
detecting a difference (as significant, with p��),
assuming a difference of a given magnitude exists. For
example, a trial with a power of 80% has an 80% chance
of detecting a difference between two treatments if a real
difference of assumed magnitude exists in the
population.

Admittedly, understanding � error, � error, and
power can be a challenge. Convention, however, usually
guides investigators for inputs into sample size
calculations. The other inputs cause lesser conceptual
difficulties, but produce pragmatic problems.
Investigators estimate the true event rates in the
treatment and control groups as inputs. Usually, we
recommend estimating the event rate in the population
and then determining a treatment effect of interest. For
example, investigators estimate an event rate of 10% in
the controls. They then would estimate an absolute
change (eg, an absolute reduction of 3%), a relative
change (a relative reduction of 30%), or simply estimate
a 7% event rate in the treatment group. Using these
assumptions, investigators calculate sample sizes.
Standard texts describe the procedures encompassing,
for example, binary, continuous, and time-to-event
measures.5–7 Commonly, investigators use sample size
and power software (preferably with guidance from a
statistician). Most hand calculations diabolically strain
human limits, even for the easiest formula, such as we
offer in panel 2. 

Effect of selecting � error and power 
The conventions of �=0·05 and power=0·80 usually
suffice. However, other assumptions make sense based
on the topic studied. For example, if a standard
prophylactic antibiotic for hysterectomy is effective with
few side-effects, in a trial of a new antibiotic we might
set � error lower (eg, 0·01) to reduce the chances of a
false-positive conclusion. We might even consider
lowering the power below 0·80 because of our reduced

concern about missing an effective treatment—an
effective safe treatment already exists. By contrast, if an
investigator tests a standard prophylactic antibiotic
against a cheap safe vitamin supplement the balance
changes. Little harm could come from making an
� error so setting it at 0·10 might make sense.7

However, if this cheap easy intervention produced
benefit, we would not want to miss it. Thus,
investigators might increase power to 0·99. 

Different assumptions about � error and power
directly change sample sizes. Reducing � and increasing
power both increase the sample: for example, reducing
� from 0·05 to 0·01 generates about a 70% increase in
trial size at power=0·50 and a 50% increase at
power=0·80 (table). At �=0·05, increasing power from
0·50 to 0·80 yields a two-fold increase in trial size and
from 0·50 to 0·99 almost a five-fold increase (table).
Choices of � and power thus produce different sample
sizes and trial costs.

Panel 1: Errors defined

Type I error (�) 
The probability of detecting a statistically significant
difference when the treatments are in reality equally
effective—ie, the chance of a false-positive result.

Type II error (�)
The probability of not detecting a statistically significant
difference when a difference of a given magnitude in reality
exists—ie, the chance of a false-negative result. 

Power (1–�)
The probability of detecting a statistically significant
difference when a difference of a given magnitude really
exists.

Panel 2: The simplest, approximate sample size formula
for binary outcomes, assuming �=0·05, power=0·90, and
equal sample sizes in the two groups

n=the sample size in each of the groups
p1=event rate in the treatment group (not in formula but
implied when R and p2 are estimated)
p2=event rate in the control group
R=risk ratio (p1/p2)

For example, we estimate a 10% event rate in the control
group (p2=0·10) and determine that the clinically important
difference to detect is a 40% reduction (R=0·60) with the new
treatment at �=0·05 and power=0·90. (Note: R=0·60
equates to an event rate in the treatment group of p1=0·06,
ie, R=6%/10%)

n=961·665�962 in each group (PASS software version 6.0
[NCSS, Kaysville, UT, USA] with a more accurate formula
yields 965)

This formula accommodates alternate � levels and power by
replacing 10·51 with the appropriate value from the table
below.

Power (1–�)

0·80 0·90 0·95

� (type I error)
0·05 7·85 10·51 13·00
0·01 11·68 14·88 17·82

n=
10·51[(R+1)–p2(R2+1)]

p2(1–R)2

n=
10·51[(0·60+1)–0·10 (0·602+1)]

0·10 (1–0·60)2
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Some investigators use one-sided tests for � error to
reduce estimated sample sizes. We discourage that
approach. While we have assumed two-sided tests thus
far, one-sided tests might indeed make sense in view of
available biological knowledge. However, that decision
should not affect sample size estimation. We suggest the
same standard of evidence irrespective of whether a one-
sided or two-sided test is assumed.7 Thus, a one-sided
�=0·025 yields the same level of evidence as a two-sided
�=0·05. Using a one-sided test in sample size
calculations to reduce required sample sizes stretches
credulity.

Estimation of population parameters 
For some investigators, estimation of population
parameters—eg, event rates in the treatment and control
groups—has mystical overtones. Some researchers scoff
at this notion, since estimating the parameters is the
aim of the trial: needing to do it before the trial seems
ludicrous. The key point, however, is that they are not
estimating the population parameters per se but the
treatment effect they deem worthy of detecting. That is a
big difference.

Usually, investigators start by estimating the event rate
in the control group. Sometimes scant data lead to
unreliable estimates. For example, we needed to
estimate an event rate for pelvic inflammatory disease in
users of intrauterine devices in a family planning
population in Nairobi, Kenya. Government officials
estimated 40%; the clinicians at the medical centre
thought that estimate was much too high and instead
suggested 12%. We conservatively planned on 6%, but
the placebo group in the actual randomised trial yielded
1·9%.8 The first estimate was off by more than 20-fold,
which enormously affects sample size calculations.

Published reports can provide an estimate of the
endpoint in the control group. Usually, however, they
incorporate a host of differences, such as dissimilar
locations, eligibility criteria, endpoints, and treatments.
Nevertheless, some information on the control group
usually exists. That becomes the starting point. 

In a trial on prevention of fever after hysterectomy,
data assumed to be reasonably good show that 10% of
women have febrile morbidity after the standard
prophylactic antibiotic. That becomes the event rate for
the control group. Estimation of the effect size of
interest should reflect both clinical acumen and the
potential public-health effect. This important aspect

should not default to a statistician. The decision process
proceeds by accumulating clinical background
knowledge. Assume the standard antibiotic costs US$10
for prophylaxis, incurs few side-effects, and is
administered orally. The new antibiotic costs US$200
for prophylaxis, has more side-effects, is administered
intravenously, but has a broader range of coverage. All
these pragmatic and clinical factors bear on the decision
process. In view of the 10% event rate for fever in the
control group, and knowing the clinical background,
would we be interested in detecting a 10% reduction to
9%; a 20% reduction to 8%; a 30% reduction to 7%; a
40% reduction to 6%; a 50% reduction to 5%; and so
forth? Determining the difference to detect reflects
inherently subjective clinical judgments. No right
answer exists. We could say that a 30% reduction is
worthwhile to detect, but another investigator might
decide on a 50% reduction. 

These parameter assumptions enormously affect
sample size calculations. Keeping the assumptions for
the control group constant, halving the effect size
necessitates a greater than four-fold increase in trial size.
Similarly, quartering the effect size requires a greater
than 16-fold increase in trial size. Stated alternatively,
sample sizes rise by the inverse square of the effect size
reduction (which statisticians call a quadratic relation).
For example, in view of our initial parameter estimates
of 10% in the control group and 6% in the intervention
group, and �=0·05 and power=0·90, about
965 participants would be necessary in each group
(panel 2). Halving the effect size, thereby altering the
intervention group estimate to 8%, requires a more than
four-fold increase in sample size to 4301. Quartering the
effect size, thereby altering the intervention group
estimate to 9%, necessitates a more than 18-fold
increase in trial size to 18 066 per group. Small changes
in effect size generate large changes in trial size.

The need for huge trial sizes with low event rates
frustrates investigators. That frustration partly stems
from a lack of understanding that, with binary
endpoints, numerator events drive trial power rather
than denominators. For example, assume �=0·05 and a
desired 40% reduction in the outcome event rate. A trial
of 2000 participants (1000 assigned to the treatment
group and 1000 to the control) with a control group
event rate of 10% would provide similar power to a trial
of 20 000 participants (10 000 assigned to each group)
with a control group event rate of 1%. Both trials would
need a similar number of numerator events—about
160—for roughly 90% power.

Low power with limited available participants 
What happens when sample size software—in view of
an investigator’s diligent estimates—yields a trial size
that exceeds the number of available participants?
Frequently, investigators then calculate backwards and
estimate that they have low power (eg, 0·40) for their

Power (1–�)
0·50 0·80 0·90 0·99

� (type I error)
0·05 100 200 270 480
0·01 170 300 390 630
0·001 280 440 540 820

Table: Approximate relative trial sizes for different levels of � and
power 
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available participants. This practice may be more the
rule than the exception.9

Some methodologists advise clinicians to abandon
such a low-power study. Many ethics review boards
deem a low power trial unethical.10–12 Chalmers’ early
paper on the lack of power in published trials
contributed to this response, which brings us back to our
opening paragraphs. He felt his group’s article fuelled
these over-reactions.4

Chalmers eventually stated that so-called
underpowered trials can be acceptable because they
could ultimately be combined in a meta-analysis.4,13 This
view seems unsupported by many statisticians,
surprisingly even those in favour of small trials.9

Nevertheless, we agree with Chalmers’ view, which
undoubtedly will draw the ire of many statisticians and
ethicists. Our support attaches three caveats. 

First, the trial should be methodologically strong, thus
eliminating bias. Unfortunately, the adequate-power
mantra frequently overwhelms discussion on other
methodological aspects. For example, inadequate
randomisation usually yields biased results. Those
biased results cannot be salvaged even if a huge sample
size generates great precision.14–16 By contrast, if
investigators design and implement a trial properly, that
trial essentially yields an unbiased estimate of effect,
even if it has lower power (and precision). Moreover,
because the results are unbiased, the trial could be
combined with similar unbiased trials in a meta-
analysis. Indeed, this idea, especially when incorporated
into prospective meta-analyses,17 is akin to multicentre
trials.

Second, authors must report their methods and results
properly to avoid misinterpretation. If they report the
trial results properly using interval estimation, the wide
confidence intervals around the estimated treatment
effect would accurately depict the low power. Reporting
of confidence intervals represents a worthwhile
contribution and avoids “the absence of evidence is not
evidence of absence” problem wrought by simplistic
p�0·05 conclusions.18–20

Third, low-powered trials must be published
irrespective of their results, thereby becoming available
for meta-analysis. Publication bias constitutes the
strongest argument against underpowered trials.21,22

Publication bias emerges when published trials do not
represent all trials undertaken, usually because
statistically significant results tend to be submitted and
published more frequently than indeterminate results.
Low-powered trials contribute to the problem because
they more generally yield an indeterminate result.
Condemnation of all underpowered trials and
prevention of their conduct, however, thwarts important
research. We need to directly tackle the real culprit of
publication bias, and the scientific community has made
great strides. Not publishing completed trials is called
both unscientific and unethical in the scientific

literature.23–25 Trial registration schemes catalogue
ongoing trials such that their results will not be lost.
Furthermore, large systematic review enterprises, most
notably the Cochrane Collaboration, scour unpublished
work to reduce publication bias.  

Proclamations of underpowered trials being unethical
strike us as a bit odd for at least two reasons. First,
preoccupation with sample size overshadows the more
pertinent concerns of elimination of bias. Second, how
can a process rife with subjectivity fuel a black-white
decision on its ethics? With that subjectivity, basing trial
ethics on statistical power seems simplistic and
misplaced. Indeed, since investigators estimate sample
size on the basis of rough guesses, if deeming the
implementation of low power trials as unethical is taken
to a logical extreme, then the world will have no trials
because sample size determination would always be
open to question. “Statements that it is unethical to
embark on controlled trials unless an arbitrarily defined
level of statistical power can be assured make no sense if
the alternative is acquiescence in ignorance of the effects
of healthcare interventions.”24 Edicts that underpowered
trials are unethical challenge reason and, furthermore,
disregard that sometimes potential participants desire
involvement in trials.26

Sample size samba 
Investigators sometimes perform a “sample size samba”
to achieve adequate power.27,28 The dance involves
retrofitting of the parameter estimates (in particular, the
treatment effect worthy of detection) to the available
participants. This practice seems fairly common in our
experience and in that of others.27 Moreover, funding
agencies, protocol committees, and even ethics review
boards might encourage this backward process. It
represents an operational solution to a real problem. In
view of the circumstances, we do not judge harshly the
samba, because it probably has facilitated the conduct of
many important studies. Moreover, it truly depicts
estimates of the sample sizes necessary given the
provided assumptions. Nevertheless, the process
emphasises the inconsistencies in the “underpowered
trials are unethical” argument: a proposed trial is
unethical before the “samba” and becomes ethical
thereafter simply by shifting the estimate of effect size.
All trials have an infinite number of powers, and low
power is relative.

Sample size modification 
With additional available participants and resource
flexibility, investigators could consider a sample size
modification strategy, which would alleviate some of the
difficulties with rough guesses used in the initial sample
size calculations. Usually, modifications lead to
increased sample sizes,29 so investigators should have
access to the participants and the funding to
accommodate the modifications.
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Approaches to modification rely on revision of the
event rate, the variance of the endpoint, or the treatment
effect.30–33 Importantly, any sample size modifications at
an interim stage of a trial should hinge on a prespecified
plan that avoids bias. The sponsor or steering committee
should describe in the protocol a comprehensible plan
for the timing and method of the potential
modifications.31

Futility of post hoc power calculations
A trial yields a treatment effect and confidence interval
for the results. The power of the trial is expressed in that
confidence interval. Hence, the power is no longer a
meaningful concern.7,27,34 Nevertheless, after trial
completion, some investigators do power calculations on
statistically non-significant trials using the observed
results for the parameter estimates. This exercise has
specious appeal, but tautologically yields an answer of
low power.7,27 In other words, this ill-advised exercise
answers an already answered question.

What should readers look for in sample size
calculations? 
Readers should find the a-priori estimates of sample
size. Indeed, in trial reports, confidence intervals
appropriately indicate the power. However, sample size
calculations still provide important information. First,
they specify the primary endpoint, which safeguards
against changing outcomes and claiming a large effect
on an outcome not planned as the primary outcome.35

Second, knowing the planned size alerts readers to
potential problems. Did the trial encounter recruitment
difficulties? Did the trial stop early because of a
statistically significant result? If so, the authors should
provide a formal statistical stopping rule.36 If they did not
use a formal rule, then multiple looks at the data inflated
�.5,29 Similar problems can be manifested in larger than
planned sample sizes. Providing planned sizes, however
arbitrary, lays the groundwork for transparent reporting.  

Low reported power or unreported sample size
calculations usually are not a fatal flaw. Low power can
reflect a lack of methodological knowledge, but it may
just indicate an inadequate number of potential
participants. Sample size calculations, even with low
power, still provide the vital information described
above. What if authors neglect mentioning a-priori
sample size calculations? Readers should cautiously
interpret the results because of the missing information
on primary outcome and on stopping clues. Moreover,
neglecting to report sample size calculations suggests a
methodological naiveté that might portend other
problems.

Nevertheless, readers should be most concerned with
systematic errors (bias) hidden by investigators. Authors
failing to report poor randomisation, inadequate
allocation concealment, deficient blinding, or defective
participant retention hide inadequacies that could cause

major bias.37–41 Thus, readers should ascribe less concern
to perceived inadequate sample size for two substantial
reasons: first, it does not cause bias and, second, any
random error produced transparently surfaces in the
confidence intervals and p values. The severest problems
for readers are the systematic errors that are not
revealed. In other words, readers should not totally
discount a trial simply because of low power, but they
should carefully weigh its value accordingly. The value
resides in the context of other research, either past or
future.42

Readers should find all assumptions underlying any
sample size calculation: type I error (�), power (or �),
event rate in the control group, and a treatment effect of
interest (or analogously, an event rate in the treatment
group). A statement that “we calculated necessary
sample sizes of 120 in each group at �=0·05 and
power=0·90” is almost meaningless, because it neglects
the estimates for the effect size and control group event
rate. Even small trials have high power to detect huge
treatment effects.

Readers should also examine the assumptions for the
sample size calculation. For example, they might believe
that a smaller effect size is more worthy than the
planned effect size. Therefore, the reader would be
aware of the lower power of the trial relative to their
preferred effect size.

Conclusions 
Statistical power is an important notion, but it should be
stripped of its ethical bellwether status. We question the
branding of trials as unethical based solely on an
inherently subjective, imprecise sample size calculation
process. We endorse planning for adequate power, and
we salute large multicentre trials of the ISIS-2 ilk;43

indeed, more such studies should be undertaken.
However, if the scientific world insisted solely on large
trials, many unanswered questions in medicine would
languish unanswered. Some shift of emphasis from a
fixation on sample size to a focus on methodological
quality would yield more trials with less bias. Unbiased
trials with imprecise results trump no results at all. 
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