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Essay

Two views about medical science 
seem to have split ever more 
apart over the past decades. One 

view is that of medical researchers who 
rejoice in discoveries and explanations 
of causes of disease. Discoveries 
happen when things are suddenly 
seen in another light: the odd course 
of a disease in a patient, the strange 
results of a lab experiment, a peculiar 
subgroup in the analysis of data, or 
some juxtaposition of papers in the 
literature. Researchers get enthusiastic 
about an idea, and try to find 
data—preferably existing data—to see 
whether there is “something in it”. As 

soon as there is a hint of confirmation, 
a paper is submitted. The next wave of 
researchers immediately tries to check 
this idea, using their own existing data 
or their trusted lab experiments. They 
will look at different subgroups of 
diseased persons, vary the definition 
of exposures, take potential bias and 
confounding into account, or vary the 
lab conditions, in attempts to explain 
why the new idea holds—or why it is 
patently wrong. In turn, they swiftly 
submit their results for publication. 
These early exchanges may lead to 
strong confirmation or strong negation. 
If not, new studies are needed to bring 
a controversy to resolution. 

The other view is that of medical 
researchers whose aim is to set up 
studies to evaluate whether the 
patient’s lot is really improved by 
the new therapies or diagnostics that 
looked so wonderful initially. The 
most developed branch of evaluation 
research is randomised trials of drug 
therapy. One major condition for 
credibility of such trials is complete 
preplanning of every aspect of the 
trial, and nowadays even advance 
registration and documentation of 
everything that was preplanned [1]. 
This preplanning should not be strayed 
from, however promising some side 
alley looks, because the credibility of 
the results will immediately take a nose 
dive.

What they think about each other. 
From the perspective of the evaluative 
researcher, this method of discovery 
and explanation is dangerously biased: 
clinicians present case series out of 
the blue, epidemiologists do multiple 
analyses on existing data collected for 
completely different purposes, basic 
scientists repeat lab experiments with 
endless new variations, changing the 
hypothesis as well as the experiment 
continuously—until something fits. 
And all these researchers always dream 
up perfect explanations. This leads to 
irresponsible “hypes” and “scares” in 
the popular press, and to unnecessary 

research loops that are a burden to the 
public purse. 

In contrast, the discovery type 
of researcher is convinced that 
too much emphasis on evaluation 
actually hampers the progress of 
science—precisely because everything 
is preplanned. For discovery you 
need chance and one-sided views. 
You need to look at the literature in 
a slanted way, to examine the data of 
others as well as your own to see them 
in a different light. To discoverers, 
evaluation is mainly a form of “quality 
control” that society needs for financial 
reimbursement by third party payers. 
Finally, numbers are not explanations; 
they do not give insight upon which 
you can build the next step of your 
reasoning or your next investigation. 

Co-existence in the mind of 
an individual? Yet, these two 
views of medical science can exist 
simultaneously in the mind of one 
person. Over the past decades, I 
may have made one contribution to 
unravelling the aetiology of a disease: 
the detection of the interaction 
between factor V Leiden and oral 
contraceptives in causing venous 
thrombosis [2]. Young women who 
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Summary
Two views exist of medical science: one 

emphasises discovery and explanation, 
the other emphasises evaluation of 
interventions. This essay analyses in what 
respects these views differ, and how they 
lead to opposite research hierarchies, 
with randomisation on top for evaluation 
and at bottom for discovery and 
explanation. The two views also differ 
strongly in their thinking about the 
role of prior specification of a research 
hypothesis. Hence, the essay explores 
the controversies surrounding subgroup 
analyses and multiplicity of analyses in 
observational research. This exploration 
leads to a rethinking of the universally 
accepted hierarchy of strength of study 
designs, which has the randomised 
trial on top: this hierarchy may be 
confounded by the prior odds of the 
research hypothesis. Finally, the strong 
opinions that are sometimes displayed in 
pitting the two types of medical science 
against each other may be explained 
by a difference in “loss function”: the 
difference in penalty for being wrong. 
A longer, more detailed version of this 
paper is found in supplementary Text S1.
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carry the factor V Leiden mutation 
(about 5% of the population of white 
European descent) and also use oral 
contraceptives have a much higher risk 
of venous thrombosis than women with 
either risk factor alone (Table 1). 

This finding was not preplanned. 
Our study originally aimed at 
quantifying existing biochemical 
and genetic risk factors for venous 
thrombosis. The factor V Leiden 
mutation, a new risk factor for venous 
thrombosis, was discovered in part 
through data from the study [3]. 
After the mutation was established, we 
looked at the data again. We found 
a few homozygotes for the mutation 
among the patients. To our surprise, 
they were almost all young women 
who used oral contraceptives. We felt 
this might be the beginning of an 
explanation of why oral contraceptives 
cause venous thrombosis, and analysed 
homozygotes and heterozygotes 
together for the interaction with 
factor V Leiden. The findings indeed 
provided insight into the question of 
why exogenous hormones cause venous 
thrombosis [4]. 

However, whenever I suspect that a 
report from a randomised controlled 
trial has strayed from the path of 
complete preplanning, e.g., by cutting 
corners in the follow-up or emphasising 
some subgroup, I might be the first to 
cry “beware” [5]. While the two views 
on medical research lead to completely 
different mindsets about subgroups 
and exploring new findings in data, I 
do teach and encourage both to young 
researchers.

Different Hierarchies for Different 
Problems
Underlying these differences in views 
are differences in the hierarchy of 
research designs that apply to different 
problems. A hierarchy of “strength” of 
research designs with the randomised 
trial on top and the anecdotal case 
report at a suspect bottom has been 

well known since the 1980s in various 
guises [6] and under various names. A 
typical rendering is shown in Box 1. I 
have qualified this hierarchy by naming 
it the hierarchy of study designs for 
“intended effects of therapy”, i.e., the 
beneficial effects of treatments that are 
hoped for at the start of a study.

The opposing hierarchy ranks study 
designs in the order in which they 
give the best chances of discovery 
and of studying new explanations, 
and is shown in Box 2. The entries 
in the second hierarchy are almost 
the same, except that the ranking is 
reversed. The first entry is somewhat 
enlarged, as anecdotal reports that lead 
to new ideas comprise not only case 
descriptions of patients, but may have 
other sources, e.g., data and literature. 
Any clinician or laboratory researcher 
will immediately recognise that this is 
how new discoveries are made. Odd 
observations in patients, data, or the 
literature spark a new idea, and only 
thereafter do analytic designs come 
into play.

A juxtaposition of the hierarchies. In 
both hierarchies, there are large gaps 
of credibility and usefulness between 
the different levels. For evaluation 
of intended effects of therapy, the 
randomised controlled trial stands 
out, followed at quite a distance by all 
observational designs. Observational 
studies of intended effects of therapy 
suffer from nearly intractable problems 
of “confounding by indication”. Only 
very rarely will we believe case reports 
or series as evidence for therapy, for 
instance when effects are dramatic 
[7,8].

For discoveries, the original case 
reports, lab observations, data analysis, 
or juxtaposition of ideas in the 
literature may be so convincing that 
they stand by themselves [7,8]. In most 
instances, however, we need other 
studies to see whether the observation 
holds. The preferred designs of 
researchers are case-control studies, or 

possibly retrospective follow-up studies, 
because these designs will give the 
quickest answer for the least effort, and 
no further evidence may be needed. 
If at all possible, researchers will use 
existing data. A truly prospective 
follow-up study (i.e., involving new data 
collection and start of follow-up after 
the formulation of a specific hypothesis) 
is so huge an undertaking for the study 
of causes of disease that researchers 
only begin such investigations when 
they are really necessary to confirm 
or refute something important. 
Randomised controlled trials are 
rarely used for research to detect or 
to establish causes of disease, mainly 
because randomisation is most of the 
time impossible, but quite fortunately, 
randomisation is most of the time not 
needed. 

Randomisation: Needed for 
Intended Effects, Not for Discovery 
and Explanation

The argument for why randomisation 
is most of the time not needed in 
observational research on causes of 
diseases [9] can be briefly recapitulated 
by pointing out the contrast between 
the investigation of beneficial effects 
versus the investigation of adverse 
effects of treatments. Beneficial effects 
are “intended effects” of treatment. 
In daily medical practice, prescribing 
will be guided by the prognosis of 
the patient: the worse the prognosis, 
the more therapy is given. This 

Box 1. Hierarchy of Study 
Designs for Intended Effects of 
Therapy
1. Randomised controlled trials

2. Prospective follow-up studies

3. Retrospective follow-up studies

4. Case-control studies

5. Anecdotal: case report and series

Table 1. Analysis of Oral Contraceptive Use, Presence of Factor V Leiden Allele, and 
Risk for Venous Thromboembolism

Factor V Leiden Oral Contraceptives Number of 
Patients

Number of 
Controls

Odds Ratio 
(Rounded)

Yes Yes 25 2 35

Yes No 10 4 7

No Yes 84 63 4

No No 36 100 1 (Reference group)

Modified from Vandenbroucke et al. [2]
doi:10.1371/journal.pmed.0050067.t001

Box 2. Hierarchy of Study 
Designs for Discovery and 
Explanation
1. Anecdotal: case reports and series, 

findings in data, literature 

2. Case-control studies

3. Retrospective follow-up studies

4. Prospective follow-up studies

5. Randomised controlled trials
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leads to intractable “confounding 
by indication”. Hence, to measure 
the effect of treatment, we need 
“concealed randomisation” to break 
the link between prognosis and 
prescription [10]. In contrast, adverse 
effects are “unintended effects” of 
treatment, and are mostly unexpected 
and unpredictable, which means 
that they usually are not associated 
with the indications for treatment 
[11]. Thus, there is no possibility of 
“confounding by indication”, and 
observational studies on adverse effects 
can provide data that are as valid as 
data from randomised trials [12,13]. 
A straightforward example of an 
unexpected and unpredictable adverse 
effect is the development of a rash after 
prescription of ampicillin in a patient 
who never used any penicillin derivative 
or analogue before. The prescribing 
physician cannot predict this 
occurrence. Hence, data from routine 
care in daily practice can be used to 
study the frequency of such rashes.

This idea can be generalised: 
most potential causes of disease 
can be viewed as producing effects 
that are undesired, unintended, 
and unexpected [9]. This becomes 
clear from classic success stories of 
epidemiologic research: e.g., before the 
links between smoking and lung cancer 
or asbestos and mesothelioma were 
known, people who exposed themselves 
to these risks were unaware of the 
consequences—which is why the risks 
could be investigated by observational 
studies .

No blank cheque for observational 
research. The above reasoning should 
not lead to uncritical acceptance of all 
observational research about causes 
of diseases. A mental device to guide 
our judgement about new claims from 
observational research is to position the 
research on an “axis of haphazardness 
of exposure” (Figure 1). 

At one side there is research on 
genetic effects. This is the closest that 
observational research can come to 

randomisation. At the other end of the 
axis there is research contrasting, for 
example, the mortality of vegetarians 
to non-vegetarians. That contrast is 
completely non-haphazard: vegetarians 
have different social backgrounds, 
different education, different life 
styles, and may have taken up the habit 
because they are health-conscious. The 
differences in (self) assignment will 
bias the comparison, and it is known 
in advance that the bias will be next 
to intractable in the analysis, since its 
various components cannot be known 
in sufficient detail. Therefore, an 
assessment of the effect of vegetarian 
diets needs randomised trials, e.g., to 
show whether vegetarian diets decrease 
blood pressure. 

Most observational research 
hovers somewhere between the 
extremes. Sometimes an observational 
researcher is quite close to the quasi-
random haphazardness of genetic 
exposures, for example, when studying 
adverse effects in selected groups of 
patients where the adverse effect is 
unpredictable [14]. When confronted 
with a new exposure that is not that 
close to ideal haphazardness, it is 
useful to ask oneself whether the most 
important confounders can be listed, 
can be measured fairly accurately, and 
can be controlled for. If the answer to 
these questions is positive, that will lead 
to greater credibility of the results. If 
negative, as in the vegetarian example, 
we may attach no credibility to the 

results despite any attempts at statistical 
correction for confounders. 

Subgroups and Multiplicity of 
Analyses
Many scientists believe that results from 
observational research are less credible 
because of the problem of subgroups 
and multiplicity of analysis: multiple 
looks at data for associations that 
were not the original aims of the data 
collection.

This problem can be conceptualised 
on an “axis of multiplicity” (Figure 
2). At one extreme there are genome-
wide analyses, where tens of thousands 
of single nucleotide polymorphisms 
(SNPs) are investigated for disease 
associations. The prior probability 
that some grain of explanation will 
come from any individual SNP is slim, 
say, one in 100,000 [15]. At the other 
extreme, there are randomised trials 
about a single disease, a single therapy, 
and a single outcome. Randomised 
controlled trials are started under 
equipoise [16,17]: the prior odds that 
the therapy that is tested is worthwhile 
are 50–50, and multiplicity of analysis 
is strictly not allowed. Thus, the axis 
of multiplicity is at the same time an 
axis of prior belief: the prior belief that 
some factor will be a causal explanation 
for a condition or that some therapy or 
treatment will work [18].

An often-heard objection about 
multiplicity in observational research 
is that many large clinical and 
epidemiologic data sets exist, and 
many PhD students analyse these 
data, which leads to data dredging. 
However, researchers do not mindlessly 
grind out one analysis after another 
[19]. Analyses are guided by clues 
that involve reasoning, much like 
in the example of factor V Leiden 
and oral contraceptives above. That 
example also shows that we did not 

doi:10.1371/journal.pmed.0050067.g001

Figure 1. Axis of Haphazardness of Exposure

doi:10.1371/journal.pmed.0050067.g002

Figure 2. Axis of Multiplicity 
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“try to explain a subgroup” after we 
found it. Many people think that 
researchers find subgroups and 
then dream up explanations for that 
finding. The inverse is more likely and 
more interesting: finding something 
strange in the data suddenly makes 
a researcher realise that this could 
explain some other phenomenon, 
outside of the data, which was already 
known but had never been explained 
before.

In practice, researchers hover over 
the axis of multiplicity. Sometimes they 
are closer to the SNPs situation when 
trying out a bold idea. At other times 
they are closer to the randomised trial 
situation with 50–50 prior odds, or they 
are in an even better a priori position 
when exploring an association that is 
well known. For example, a researcher 
may look at active smoking and lung 
cancer in data not collected for that 
purpose. Critics will never say: “You 
only found that association because 
of your multiple analyses”.  On the 
contrary, if an association between 
active smoking and lung cancer were 
not found, a critic would doubt the 
validity of the data.

Hypotheses before or after seeing 
the data? Many researchers have the 
intuition that findings on subgroups 
that were specified before data analysis 
are more credible than explanations 
that arose after seeing the data. In 
general, the logical proof of this 
intuition is difficult because new ideas 
in science often gain credibility when 
they can explain previous findings that 
were not understood [20,21]. 

For randomised trials, this intuition 
remains useful [22]. Large randomised 
trials are set up after years of 
deliberation by dozens of experts. It 
is not likely that any important prior 
idea about subgroups in which the 
therapy might work better or worse was 
overlooked. Usually this recognition 
is dealt with by including or excluding 
such subgroups from the trial. It is 
therefore unlikely that a new and 
worthwhile subgroup would turn up 
during data analysis. Thus, the post hoc 
discovery of subgroups in randomised 
trials has low prior probability, from 
which follows low credibility of 
subgroup findings. 

However, because observational 
studies concern aetiology, and 
because aetiologies are often multiple, 
prior evidence might exist without 

investigators or data analysts being 
aware of it. This becomes evident when 
data are used for new purposes. The 
Framingham study is an archetypical 
example: originally started to investigate 
a few cardiovascular risk factors, it has 
branched off in many directions, from 
chronic pulmonary disease to genetics, 
for which a mix of old and new data 
are used [23]. When data are used for a 
different purpose, even if that purpose 
was found during data analysis, the data 
acquire new priors, i.e., a different body 
of literature—even if that literature was 
not part of setting up the study or the 
analysis [21,24]. (See example on page 
14 in longer version of article in Text 
S1.)

Replication: universal solution for 
multiplicity and subgroup analysis. 
Subgroups and multiple analyses 
are a necessary part of observational 
research: otherwise, one cannot make 
new discoveries, nor quickly check 
discoveries by others. Still, many 
interesting ideas will have low priors. 
The universal solution is replication 
[25]. This was already advocated for 
subgroups found in randomised trials, 
where the veracity of a surprising 
finding can be strongly enhanced if 
similar subgroup results are found 
across similar trials in a meta-analysis 
[22]. In genome-wide analyses, which 
may have the most severe problems of 
multiplicity, investigators collaborate 
in consortia, to replicate findings from 
genetic analyses as a prerequisite for 
publication [26]. 

For observational research, the 
replication needed is not the simple 
replication of more or less the same 
study to obtain larger numbers. When 
the validity of observational research 
is doubted, it is usually not because 
of fear of chance events, but because 
of potential bias and confounding. 
Repeating a study in the same way as 
previous studies may replicate the same 
problems. Therefore, different studies 
are needed with different designs, 
different methods of data collection, 
and different analyses. This makes 
systematic reviews of observational 
studies more difficult, and at the same 
time more interesting: it is necessary 
to reason about the advantages and 
disadvantages of the different studies 
in the light of potential bias and 
confounding, and to ponder how one 
study remedies potential weaknesses of 
the other [27]. 

Rethinking the Hierarchy of 
Evidence

The ideas about subgroups and prior 
odds of hypotheses lead to further 
insight in the usual hierarchy of 
strength of study designs with the 
randomised trial on top and the case 
report at a suspect bottom (Box 1). 
Perhaps this hierarchy is a hierarchy of 
prior odds. Intuitively, we may feel that 
randomised trials are the most robust 
type of study because positive findings 
from such trials stand the test of time 
better than findings from other designs. 
However, that might be because they 
start with higher prior odds.

The way in which prior odds might 
shape our views can be understood 
when imagining an upside-down world 
in which randomised trials would be 
started with the same prior odds of truth 
as individual SNPs in a genome-wide 
analysis, say, one in 100,000. Suddenly, 
randomised trials would look abysmally 
poor: almost all their positive findings 
would be chance findings, as one in 20 
would be significant by conventional 
testing. In this upside-down world, 
almost no positive result of any 
randomised trial would stand the test of 
time. Imagine further that observational 
studies would only be started with 
priors of at least 50–50. When positive, 
posterior odds would be of the order 
of 80–20 or more. Their results would 
stand the test of time, and would have 
great face credibility. Observational 
research would suddenly look very good. 

In our real world, randomised trials 
can solve problems of “confounding 
by indication” in situations where 
observational research can not. Still, 
we may have been deluding ourselves 
about their unique superiority because 
they start with much higher prior odds 
than most observational research. 
Within the realm of observational 
research, it is often felt that prospective 
follow-up studies are stronger than case-
control studies. The main argument 
seems to be that findings of case-control 
studies are too often not upheld in 
future studies [6,28,29]. Given that 
case-control studies will often be the 
first analytic study of a new idea, while 
prospective follow-up studies will only 
be started when something important 
has to be confirmed—that is, when the 
prior odds are already higher— this 
may again explain the difference in 
seeming strength.
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Synthesis: A Difference in Loss 
Function?

We need both hierarchies, the 
hierarchy of discovery and explanation 
as well as that of evaluation. Without 
new discoveries leading to potentially 
better diagnosis, prevention, or 
therapy, what would we do randomised 
trials on? Conversely, how could we 
know that a discovery is useful, if not 
rigidly evaluated? 

The two hierarchies serve different 
purposes. Many researchers truly enjoy 
the game of multiplicity of analysis with 
low priors in observational research: 
it is the duty of academics to explore 
hypotheses that are interesting, and 
to follow them up wherever they lead 
[30]. The difference with evaluative 
research might be a difference in “loss 
function”: the penalty for being wrong. 
R. A. Fisher once suggested that in 
contrast to decisions about batches of 
manufactured products, where one 
can calculate the penalty for a wrong 
decision, in science it is impossible to 
calculate the loss function of a wrongly 
held or wrongly rejected scientific 
explanation [31]. 

Paraphrasing this idea, I propose 
that the loss function of evaluation 
research—the prototypical randomised 
trial of drug therapy—concerns real 
people who are cured or harmed 
by our acceptance or rejection of a 
particular treatment. Under equipoise, 
the data from randomised trials are 
the best information that we have. 
We should not tamper with such data: 
our delight in exploring new ideas 
should not be allowed to affect a future 
patient’s health.

In contrast, the loss function of 
discovery and explanation cannot be 
defined equally directly. Aetiologic 
researchers should pursue low-
probability hypotheses because these 
may lead to new insights. Much good 
can come from going down the wrong 
alley and detecting why it is wrong, 
or playing with a seemingly useless 
hypothesis; the real breakthrough might 
come from that experience. What is lost 
if we go too far in the wrong direction 
is time and money for science. That is 
again inevitable: science makes progress 
“in a fitful and meandering way”, as 
described by Stephen Jay Gould [32]. 

In the end, we will have to live with 
the fitful and meandering ways of 

discovery and explanation, and at the 
same time call for strict evaluation 
before we apply new insights to people. 
There is no other way forward. �
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