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Antifungal Agents in Children
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Fungal pathogens are an increasingly recognized complication of organ

transplantation and the ever more potent chemotherapeutic regimens for child-

hood malignancies. There has been a recent surge in the development of anti-

fungals, including new formulations of older drugs and the discovery of a class of

agents with a novel target. More recent studies have expanded knowledge on how

to optimize the utility of these new agents. Because of the paucity of pediatric

data, however, many recommendations for use of antifungals in children are

derived from experience in adult patients.

This article provides a brief overview of the current state of systemic anti-

fungal therapy. Currently licensed drugs, including amphotericin B and its lipid

derivates; 5-fluorocytosine; the azoles, including fluconazole, itraconazole, and

voriconazole; and a representative of the new class of echinocandin agents,

caspofungin, are discussed. Newer second-generation azoles (posaconazole and

ravuconazole) and echinocandins (micafungin and anidulafungin) that are likely

to be licensed in the United States in the next few years also are addressed. The
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Table 1

Spectrum of activity of selected antifungal agents

Antifungal Important clinical uses

Amphotericin B Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus

neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis,

Sporotrix schenckii, most Candida species, Aspergillus, Zygomycetes

(not: Candida lusitaniae, Scedosporium, Fusarium, Trichosporon)

5-Fluorocytosine Only in combination therapy for Candida, C. neoformans,

dematiaceous molds

Fluconazole Most Candida, C. neoformans, B. dermatitidis, H. capsulatum,

C. immitis, P. brasiliensis

(not: Candida krusei, Candida glabrata, Aspergillus)

Itraconazole Candida, Aspergillus, B. dermatitidis, H. capsulatum, C. immitis,

P. brasiliensis

Voriconazole Candida, Aspergillus, Fusarium, B. dermatitidis, H. capsulatum,

C. immitis, Malassezia species, Scedosporium, dematiaceous molds

(not: Zygomycetes; caution: C. glabrata)

Caspofungin Candida, Aspergillus

(not: C. neoformans, Fusarium, Zygomycetes)
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antifungal spectra of each agent are presented on Table 1, and recommended

dosages are summarized on Table 2.
Polyenes: amphotericin B

Mechanism of action

The oldest antifungal class is the polyene macrolides, amphotericin B and

nystatin. Since its initial approval for use in 1958, amphotericin B deoxycholate

remains the ‘‘gold standard’’ for the therapy of many invasive fungal infections

and the comparative agent for all newer antifungal agents. Amphotericin B binds

to ergosterol, the major sterol found in fungal cytoplasmic membranes, creating

transmembrane channels resulting in an increased permeability to monovalent

cations. Fungicidal activity is believed to be caused by leakage of essential

nutrients from the fungal cell.

Pharmacology and toxicities

The fungicidal activity of amphotericin B is concentration-dependent,

increasing directly with the amount of drug attained at the site of infection.

Amphotericin B also has a prolonged postantifungal effect. That is, antifungal

activity persists even after the concentration of drug declines to less than the

amount needed to kill the fungus. These pharmacodynamic characteristics sug-

gest that a single daily dose of amphotericin B would be effective [1]. Although

there is a relationship between total dose administered and tissue concentrations

[2], there is no conclusive clinical evidence that doses greater than 1 mg/kg/d



Table 2

Preferred pediatric dosing of approved systemic antifungal agents

Drug class Antifungal drug Preferred adult dosing Preferred pediatric dosing Pedatric dosing comments

Polyene Amphotericin B deoxycholate

(Fungizone)

1–1.5 mg/kg/d 1–1.5 mg/kg/d Children generally can tolerate

higher doses than adults

Amphotericin B lipid complex (Abelcet) 5 mg/kg/d* 5 mg/kg/d

Amphotericin B colloidal

dispersion (Amphocil; Amphotec)

5 mg/kg/d* 5 mg/kg/d

Liposomal amphotericin B

(AmBisome)

5 mg/kg/d* 5 mg/kg/d

Pyrimidine

analogue

5-Fluorocytosine (Ancobon) 150 mg/kg/d

divided q6h

150 mg/kg/d divided q6h Use caution with large oral

volume for neonates

Triazole Fluconazole (Diflucan) 100–800 mg/d;

3–6 mg/kg/d

6–12 mg/kg/d Dose higher in children due to

shorter half-life; neonates require

further special dosing

Itraconazole (Sporanox) 200–400 mg/d 2.5–5 mg/kg/dose bid Dosing BID preferred in children

Voriconazole (VFend) Load: 6 mg/kg/dose

bid � 1 d

Load: 6 mg/kg/dose bid � 1 d Linear pharmacokinetics in

children; exact pediatric dose not

yet determined, but believed to be

greater than adult dosing

Maintenance:

3–4 mg/kg/dose bid

Maintenance: 4–8 mg/kg/dose BIDy

Echinocandin Caspofungin (Cancidas) Load: 70 mg qd � 1 d Load: 70 mg/m2 QD � 1 d Dosing for hepatic insufficiency in

children is 35 mg/m2 qd, similar to

the adult decrease to 35 mg qd

Maintenance:

50 mg qd

Maintenance: 50 mg/m2 qd

* Abelcet is officially recommended at 5 mg/kg/d; Amphocil, at 3–5 mg/kg/d; and AmBisome, at 1–5 mg/kg/d. Most clinical data have been obtained with the use of

these preparations at 5 mg/kg/d, and most clinicians use and prefer this higher dosing.
y Suggested dosing by the author; exact pediatric dosing for voriconazole not yet determined.
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of amphotericin B deoxycholate are necessary for successful therapy [3,4].

Cerebrospinal fluid (CSF) concentrations are only 2% to 4% of serum con-

centrations [5], so this agent is a poor choice as monotherapy for the treatment

of meningitis.

In addition to fungal ergosterol, amphotericin B binds to cholesterol in human

cell membranes, likely accounting for its toxicity [6]. Lipid formulations of am-

photericin B generally are better tolerated than the conventional deoxycholate

preparation, perhaps because the lipid stabilizes the drug in a self-associated state

so that it cannot interact with the cholesterol of human cellular membranes [7,8].

The reduced nephrotoxicity of lipid formulations also may result from their

preferential binding to serum high-density lipoproteins. High-density lipopro-

tein–bound amphotericin B seems to be released to the kidney more slowly, or to

a lesser degree, than conventional amphotericin B that is bound to low-density

lipoproteins [9].

Three lipid-associated formulations of amphotercin B offer the advantage

of an increased daily dose of the parent drug, better delivery to the primary re-

ticuloendothelial organs (lungs, liver, spleen) [10,11], and reduced toxicity. The

US Food and Drug Administration (FDA) approved amphotericin B lipid com-

plex (ABLC, Abelcet) in December 1995, amphotericin B colloidal dispersion

(ABCD, Amphocil, Amphotec) in December 1996, and liposomal amphoteri-

cin B (L-amphotericin B, AmBisome) in August 1997 [12]. It is postulated that

activated monocytes/macrophages take up drug-laden lipid formulations and

transport them to the site of infection, where phospholipases release free drug

[12,13]. A multicenter maximum tolerated dose study of L-amphotericin B using

doses of 7.5 to 15 mg/kg/d found a nonlinear plasma pharmacokinetic profile

with a maximal concentration at 10 mg/kg/d and no demonstrable dose-limiting

nephrotoxicity or infusion-related toxicity [14].

Amphotericin B nephrotoxicity is generally less severe in infants and children

than in adults, likely resulting from the more rapid clearance of the drug in

children. Reduced nephrotoxicity with a lipid formulation has been reported in

adults and has been observed in children [15,16] and neonates [17]. A phar-

macokinetic study of L-amphotericin B conducted in 39 children ranging in age

from 1 to 17 years observed no dose-related trends in adverse events and a

maximally tolerated dose of 10 mg/kg/d (Gilead Sciences, data on file). These

results are similar to the results in studies conducted in adults [14]. A 56-center

prospective study evaluated the safety and efficacy of L-amphotericin B ad-

ministered to 260 adults, 242 children (b15 years old), and 43 infants (b2 months

old) [18]. In general, the infants and children tolerated the largest doses of

L-amphotericin B administered for the longest time (median 16 days) [18].

Clinical experience and pediatric data

The optimal duration of amphotericin B therapy is unknown, but likely

depends on underlying disease, extent of fungal infection, resolution of

neutropenia, degree of immunosuppression, and graft function after transplan-
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tation. No specific total dose of amphotericin B currently is recommended; rather,

a standard approach is to initiate therapy with 1 mg/kg/d, reducing the dose if

toxicity develops [19]. No data indicate that any of the amphotericin B lipid

formulations are more effective than conventional amphotericin B [10,12,20–22].

A study of 56 infants with candidiasis, including 52 preterm infants, showed no

differences in mortality or time to resolution of candidemia between neonates

receiving conventional amphotericin B (n = 34), L-amphotericin B (n = 6), or

ABCD (n = 16) [23]. The decision to prescribe a lipid formulation of ampho-

tericin B should be based on the potential of reducing nephrotoxicity or infusion-

related toxicity rather than anticipated therapeutic benefit.

In noncomparative studies, ABLC has been found to be an effective antifungal

agent in children. In an open-label pediatric trial, complete or partial therapeutic

response was observed in 70% (38 of 54) of patients, including 56% (14 of 25)

of patients with aspergillosis and 81% (22 of 27) of patients with candidiasis [16].

A retrospective study of 46 children treated with ABLC reported an overall

response rate of 83% (38 of 46), including 78% (18 of 23) against aspergillosis

and 89% (17 of 19) against candidiasis [24].

Few published data exist on the use of lipid formulations of amphotericin B

in neonates. One study that included 40 preterm neonates (mean birth weight

1090 g, mean gestational age 28.4 weeks) noted that L-amphotericin B was as-

sociated with clinical resolution in greater than 70% of patients with candidiasis

[25]; other uncontrolled studies have confirmed the high response rates. In three

other studies, 21 of 21, 35 of 37, and 20 of 24 neonates with candidiasis cleared

their infections [26–28].
Pyrimidine analogues: 5-Fluorocytosine

Mechanism of action

5-Fluorocytosine (5-FC, Ancoban) is a fluorinated analogue of cytosine that

has antimycotic activity resulting from the rapid conversion of 5-FC into

5-fluorouracil (5-FU) within susceptible fungal cells [29,30]. 5-FU inhibits fungal

protein synthesis after incorporation into fungal RNA in place of uridylic acid or

through inhibition of thymidylate synthetase, inhibiting fungal DNA synthesis

[30]. 5-FC has little inherent antimold activity [31], and most reports detail

clinical failure with monotherapy against yeast infections [32]. Antifungal

resistance develops quickly to 5-FC monotherapy, so the drug should be used

only in combination with other agents. 5-FC is thought to enhance the antifungal

activity of amphotericin B, especially in anatomic sites where amphotericin B

penetration is poor, such as CSF, heart valves, and the vitreal body [3]. One

explanation for the synergism detected with amphotericin B plus 5-FC is that the

membrane-permeabilizing effects of low concentrations of amphotericin B

facilitate penetration of 5-FC to the cell interior [33].
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Pharmacology and toxicities

5-FC is well absorbed after oral administration [30]. 5-FC distributes widely,

attaining therapeutic concentrations in most body sites, such as the CSF, vitreous

and peritoneal fluids, and inflamed joints, because it is small and highly water

soluble and not bound by serum proteins to a great extent [30]. It is often

technically difficult to treat neonates with 5-FC because of the large volume

necessitated by using the oral formulation and the lack of an intravenous for-

mulation available in the United States.

5-FC toxicity seems to be due to its conversion to 5-FU, with reports of 5-FU

concentrations being in the range found after chemotherapeutic doses [34]. 5-FC

may exacerbate myelosuppression in patients with neutropenia, and trough serum

concentrations of 100 mg/mL or greater are associated with bone marrow aplasia.

5-FC serum concentrations should be monitored, and levels should be maintained

at approximately 40 to 80 mg/mL. In a review of a multicenter trial of 194 patients

who received amphotericin B plus 5-FC for cryptococcal meningitis, hematologic

toxicity appeared in the first 2 weeks of therapy in 56% of patients and in the first

4 weeks of therapy in 87% [35].

Clinical experience and pediatric data

A pivotal trial showed that the combination of amphotericin B plus 5-FC was

more effective than amphotericin B alone in the treatment of cryptococcal men-

ingitis [36]. A subsequent multicenter study of 194 patients with cryptococcal

meningitis concluded that 4 weeks of amphotericin B plus 5-FC was adequate

for immunocompetent patients without neurologic complications, such as hydro-

cephalus. In immunocompromised patients, 6 weeks of combination therapy

resulted in fewer relapses [37]. Amphotericin B combined with 5-FC currently is

recommended as initial therapy for cryptococcal meningitis [38]. These two

agents also are suggested for use in patients with candidal meningitis [39].

Data regarding the use of 5-FC in children are limited. One review of 17 cases

of candidal meningitis that included 11 patients younger than 12 months old

noted improvement in 15 patients treated with amphotericin B and 5-FC [40].
Azoles

Mechanism of action

The azole antifungals are heterocyclic synthetic compounds that inhibit the

fungal lanosterol 14a-demethylase, which catalyzes a late step in ergosterol

biosynthesis. The drugs block demethylation of the C-14 of lanosterol, leading to

substitution of methylated sterols in the fungal cell membrane and depletion of

ergosterol. The result is an accumulation of precursors leading to abnormalities in
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fungal membrane permeability, membrane-bound enzyme activity, and a lack of

coordination of chitin synthesis [41,42].

Fluconazole

Pharmacology and toxicities

Fluconazole (Diflucan) is a triazole that was approved by the FDA for

treatment of cryptococcosis and Candida infections in 1990. Fluconazole’s

activity is concentration-independent; it does not increase when the maximal

fungistatic concentration is attained [43]. Fluconazole is available as either an

oral or an intravenous form, and oral fluconazole is approximately 90% bio-

available. Unchanged drug is cleared predominantly by the kidneys; metabolism

accounts for only a minor proportion of fluconazole clearance [44]. Drug

concentrations in CSF and vitreous humor are approximately 80% of the concen-

trations found in blood [45]. Fluconazole passes into tissues and fluids rapidly,

probably as a result of its relatively low lipophilicity and limited binding to

plasma proteins. Concentrations of fluconazole are 10-fold to 20-fold higher in

the urine than in the blood, and it is particularly appropriate for the therapy of

fungal urinary tract infections.

The pharmacokinetics of fluconazole differ between adults and children.

A review of five separate fluconazole pharmacokinetic studies that included

101 infants and children ranging in age from 2 weeks to 16 years [44] showed

that fluconazole clearance is more rapid in children than adults. The mean plasma

half-life was approximately 20 hours in children compared with 30 hours in

adults. To achieve comparable drug exposure, the daily fluconazole dose needs to

be approximately doubled for children older than 3 months to 6 to 12 mg/kg/d.

The volume of distribution of fluconazole is greater and more variable in

neonates than in infants and children. There is also a slow elimination of

fluconazole, however, with a mean half-life of 88.6 hours at birth, decreasing to

approximately 55 hours by 2 weeks of age. Neonates should be treated with a

higher dose of fluconazole to compensate for their increased volume of distri-

bution, but the frequency of dosing needs to be decreased because of their slow

elimination. Specifically, during the first 2 weeks of life, fluconazole should be

dosed every 72 hours; this dosing interval can be reduced to 48 hours during the

next 2 weeks of life [44]. The pharmacologic consequence of such a long half-life

is that patients require at least 8 days to reach steady state [46].

Side effects of fluconazole are uncommon. In one study of 24 immunocom-

promised children, elevated transaminases were observed in only 2 children [47].

Another review of 562 children confirmed that pediatric results mirror the

excellent safety profile seen in adults. The most common side effects were

gastrointestinal upset (vomiting, diarrhea, nausea) (7.7%) or skin rash (1.2%) [48].

Clinical experience and pediatric data

In one clinical trial of 206 nonneutropenic adult patients with invasive

candidiasis, the rate of successful therapy with 0.5 to 0.6 mg/kg/d of ampho-
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tericin B (79%) was similar to that with 400 mg/d of fluconazole (70%) [49].

Another multicenter trial of 219 mostly nonneutropenic adult patients with

invasive candidiasis found that patients treated with a combination of fluconazole

and amphotercin B (n = 112) showed no difference in the 30-day time to failure

compared with patients treated with fluconazole alone (n = 107) [50]. Although a

secondary analysis suggested that combination therapy was superior in efficacy

to fluconazole alone, the difference in favorable outcome was small (69% versus

56%). A definitive conclusion regarding the benefit of this combination therapy

to treat candidiasis is unproven.

Clinical and mycologic response was observed in 97% of 40 neonates and

infants treated with fluconazole. These children had been nonresponsive or in-

tolerant to standard antifungal therapy [51]. In another report, 80% of 40 neonates

with invasive candidiasis were treated successfully with 6 mg/kg/d of flu-

conazole. Although three of these patients relapsed, they ultimately were cured

with an increased dose of fluconazole (10 mg/kg/d) [52]. Finally, a prospective

randomized study that compared fluconazole with amphotericin B in 24 infants

with candidemia noted a survival benefit among infants treated with fluconazole

(67%) compared with infants who received amphotericin B (55%) [53].

Fluconazole also has been evaluated for antifungal prophylaxis. Randomized,

placebo-controlled clinical trials have shown that the prophylactic use of

fluconazole after allogeneic bone marrow transplantation results in lower rates

of candidal infection and graft-versus-host disease [54]. Studies conducted in

adult stem cell transplant recipients observed that 200 mg/d of prophylactic

fluconazole is as effective as 400 mg/d [55,56]. One concern with this patient

population continues to be the lack of anti-Aspergillus activity with fluconazole.

A prospective, placebo-controlled, randomized, double-blind evaluation of pro-

phylactic fluconazole has been conducted in 100 low-birth-weight (b1000 g)

infants. Six weeks of fluconazole therapy resulted in a statistically significant

reduction in the incidence of fungal colonization (22% versus 60%) and a de-

crease in the development of invasive fungal infection (0% versus 20%) [57].
Itraconazole

Itraconazole (Sporanox) is fungicidal and has been available for clinical use

since 1990 [58]. Limitations of itraconazole include lack of a parenteral formu-

lation, erratic oral absorption in high-risk patients, and frequent drug interactions.
Pharmacology and toxicities

Itraconazole has a high volume of distribution and accumulates in tissues [42].

It is not reliably absorbed from the gastrointestinal tract and has high protein

binding [1]. H2 receptor antagonists may result in decreased drug absorption,

whereas acidic beverages, such as colas or cranberry juice, may enhance

absorption [59]. Administration of the capsular formulation with food increases

absorption, but the oral suspension is better absorbed on an empty stomach [5].
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Elimination of itraconazole is primarily hepatic; there is no need for dosage

adjustment in the presence of renal function impairment [42].

Serum concentrations of itraconazole are much lower in children than in adults

after administration of the oral solution. This is especially true in children

younger than 5 years old [60–62]. Children usually need twice-daily dosing,

whereas once-daily dosing is appropriate for adults.

Itraconazole is well tolerated. Nausea and vomiting occur in about 10% of

subjects, and elevated transaminases occur in 5% [63]. Rare cases of cardio-

myopathy have been reported in adults, but no cases have been described in

children. Itraconzole is a potent inhibitor of the cytochrome CYP3A4 enzyme

and can result in important drug interactions. Prior or concurrent use of rifampin,

phenytoin, carbamazepime, and phenobarbital should be avoided, and concomi-

tant use with cyclophosphamide should be discouraged [64]. Any drug handled

by this cytochrome pathway with normally low bioavailability, extensive first-

pass metabolism, or a narrow therapeutic window may be especially vulnera-

ble [65].
Clinical experience and pediatric data

Itraconazole is currently more appealing as a prophylactic rather than a

therapeutic agent. It may be superior to fluconazole for this purpose. In one large

randomized, controlled trial conducted in 445 patients with hematologic malig-

nancy, itraconazole oral solution prevented more fungal infections than flu-

conazole suspension. Specifically, six proven fungal infections, including four

fatal cases, occurred in the fluconazole recipients compared with one nonfatal

case of candidiasis in the itraconazole recipients [66]. Additionally, although there

were no cases of invasive aspergillosis in the patients receiving itraconazole, four

cases of aspergillosis were diagnosed among patients receiving fluconazole.

Itraconazole and fluconazole prophylaxis had similar prophylactic efficacy in a

trial conduced in liver transplant recipients [67]. Itraconazole also has been

shown to be an effective prophylactic agent in patients infected with HIV. A

double-blind, placebo-controlled trial conducted in 63 patients with HIV infection

in Thailand showed a reduction in fungal infections from 16.7% in the placebo

recipients to 1.6% in patients taking itraconazole [68].

There are no pivotal studies of itraconazole prophylaxis in children, and the

few children enrolled in the larger prophylaxis studies were not analyzed

separately. A phase I study in 26 HIV-infected children showed the cyclodextrin

itraconazole solution was well tolerated and efficacious against oropharyngeal

candidiasis, including responses in all patients with fluconazole-resistant iso-

lates [62].
Voriconazole

Voriconazole (VFend) is a second-generation triazole and a synthetic

derivative of fluconazole. Voriconazole combines the broad spectrum of anti-
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fungal activity of itraconazole with the increased bioavailability of fluconazole.

It is fungicidal against Aspergillus and fungistatic against Candida species [58,

69–71].
Pharmacology and toxicities

Voriconazole metabolism is nonlinear in adults with an approximately

threefold increase in the area under the concentration-time curve after a 33%

increase in dosage. In contrast, elimination of voriconazole seems to be linear in

children after doses of 3 mg/kg and 4 mg/kg every 12 hours [72].

Children require higher doses of voriconazole than adults to attain similar

serum concentrations over time. Based on limited pharmacokinetic analyses, it

seems that a pediatric dosage of 11 mg/kg administered every 12 hours is

approximately bioequivalent to an adult dosage of 4 mg/kg given every 12 hours

[72]. The correct pediatric dosage is unknown, but seems to be much higher than

the dosage for adult patients. Using voriconazole at recommended doses for

adults may lead to clinical failures in children.

After nearly complete oral absorption, voriconazole is extensively metabolized

by the liver. As a result of a point mutation in the gene encoding CYP2C19, some

people are poor metabolizers, and some are extensive metabolizers [73]. About

5% to 7% of whites and 20% of non-Indian Asians have a deficiency in

expressing this enzyme. As a result, voriconazole levels are fourfold greater in

these subjects than in homozygous subjects who metabolize the drug more

extensively [74,75].

Voriconazole’s main side effects include reversible dose-dependent visual

disturbances (increased brightness, blurred vision) [76] in one third of treated

patients, elevated hepatic transaminases with increasing doses [77,78], and

occasional skin reactions likely secondary to photosensitization [41,69,79]. Drug

interactions also can be problematic. Concomitant use with sirolimus is contra-

indicated because concentrations of the immunosuppressant can be increased

2-fold to 10-fold [80,81].
Clinical experience and pediatric data

Voriconazole is statistically superior to amphotericin B deoxycholate in the

therapy of aspergillosis. In a prospective clinical trial of 392 patients with

invasive aspergillosis, more than 50% of patients initially treated with

voriconazole compared with only about 30% of patients treated with amphoteri-

cin B had complete or partial responses. Improved survival also was observed

among patients initially treated with voriconazole [82]. Similar positive ex-

perience with voriconazole was noted in an open-label multicenter study of

116 patients with invasive aspergillosis treated with voriconazole as either

primary (60 patients) or salvage (56 patients) therapy [83]. These data have led

clinicians to conclude that voriconazole is the preferred agent for treatment of

invasive aspergillosis.
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Voriconazole also is effective in the treatment of Candida infections. In a

multicenter evaluation of the therapy of esophageal candidiasis in 391 immuno-

compromised patients, voriconazole was successful in 98.3%, and fluconazole

was successful in 95.1% [84]. In another study of 422 patients with invasive

candidiasis, approximately 40% of patients were treated successfully with

voriconazole. This success rate was virtually identical to that of amphotericin B

therapy, followed by oral fluconazole [85]. Voriconazole also has been evaluated

in the management of febrile neutropenic patients. In one large study of more

than 800 episodes of fever and neutropenia, voriconazole was slightly inferior

to L-amphotericin B. Voriconazole was effective in 26% of 415 subjects, and

L-amphotericin B was effective in 30% of 422 subjects. There were more

breakthrough infections in the L-amphotericin B recipients, however, includ-

ing 13 cases of invasive aspergillosis versus 4 cases in the voriconazole recipi-

ents [86].

The largest pediatric report of voriconazole is an open-label, compassionate-

use evaluation of the drug in 58 children with proven or probable invasive fungal

infection refractory to or intolerant of conventional antifungal therapy [87].

Almost three quarters of the patients had aspergillosis. After a mean of 3 months

of therapy, 45% of the children had a complete or partial response. Only 7% of

the subjects could not tolerate the drug. Stratifying outcome by pathogen revealed

a complete or partial response of 43% against aspergillosis, 50% against

candidemia, and 63% against scedosporiosis.

Experimental azoles: posaconazole and ravuconazole

Posaconazole is a second-generation triazole that is closely related to

itraconazole. It is fungicidal in vitro against Aspergillus and has a half-life of

at least 18 to 24 hours in humans [41,88]. Presently, only an oral formulation of

posaconazole is available. Posaconazole was found to be effective and well

tolerated in a multicenter study in patients refractory to other antifungal agents

[89]. Experience with posaconazole in children is limited. In an open-label study,

two of seven patients with chronic granulmonatous disease and invasive fungal

infection were younger than 18 years old [90]. Six patients had a complete

response. Similarly, two patients were younger than 18 years old in another open-

label study of 23 patients with zygomycosis. The overall success rate of therapy

in this study was 70% [91]. Poscaonazole is likely to play a role in antifungal

management as an excellent oral agent, but detailed pediatric studies have yet

to be performed.

Ravuconazole is structurally similar to fluconazole and voriconazole. It is

fungicidal [92,93], has 47% to 74% bioavailability with linear pharmacokinetics

[41], and has a long half-life of approximately 100 hours [94]. Of 76 patients

with esophageal candidiasis, 76% were cured with 7 days of therapy with

ravuconazole. The drug’s safety profile was similar to that of fluconazole [95].

Ravuconazole’s long half-life could lead to potentially intermittent dosing. No

pediatric data are available.
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Echinocandins

Mechanism of action

For years, development of new systemic antifungals focused on chemically

modifying existing classes. More recently, an entirely new class of antifungals,

the echinocandins, has been discovered. These agents interfere with cell wall

biosynthesis by noncompetitive inhibition of 1,3-b-D-glucan synthase, an en-

zyme present in fungi but absent in mammalian cells [41,88]. This 1,3-b-glucan,
an essential cell wall polysaccharide, forms a fibril of three helically entwined

linear polysaccharides and provides structural integrity to the fungal cell wall

[96,97]. Echinocandins are fungicidal against Candida but fungistatic against

Aspergillus [98]. These agents are not metabolized through the cytochrome

enzyme system, but through a presumed O-methyltransferase, lessening some

of the drug interactions and side effects seen with the azoles.

Caspofungin

Pharmacology and toxicities

Caspofungin (Cancidas) is a fungicidal semisynthetic derivative of the natural

product pneumocandin B0. It has linear pharmacokinetics [99], is excreted

primarily by the liver, has a beta-phase half-life of 9 to10 hours [100], and is well

tolerated [101–104]. It is not metabolized by the cytochrome isoenzyme system

[105], and at present there is no known maximal tolerated dose and no toxicity-

defined maximal length of therapy. Elevations of caspofungin plasma concen-

trations are observed in patients with mild hepatic insufficiency, and a dose

reduction in adults from 50 mg to 35 mg daily after the standard 70-mg loading

dose is recommended in this setting [77].

A pharmacokinetic study conducted in children evaluated 39 patients between

ages 2 and 17 years. Data were analyzed on the basis of weight (1 mg/kg/d) and

body surface area (50 mg/m2/d or 70 mg/m2/d) [106]. Compared with plasma

concentrations attained in adults treated with 50 mg/d, the weight-based approach

resulted in suboptimal plasma concentrations, whereas the 50 mg/m2/d dose

yielded similar plasma concentrations in the children. Caspofungin’s half-life is

approximately one third less in children than in adults.

Because 1,3-b-glucan is a selective target present only in fungal cell walls and

not in mammalian cells, caspofungin has few adverse effects [96]. The drug has

no apparent myelotoxicity or nephrotoxicity [107]. Plasma concentrations of

tacrolimus are reduced by about 20% when coadministered with caspofungin, but

tacrolimus does not alter the pharmacokinetics of caspofungin [108]. Cyclo-

sporine increases the concentration of caspofungin by about 35%, but plasma

concentrations of cyclosporine are not altered by coadministration of caspofungin

[109]. A retrospective analysis of the compassionate use of caspofungin in

25 children, most of whom also received other antifungals, noted that only

3 (12%) had a possible drug-related adverse event [110].
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Clinical experience and pediatric data

In the pivotal clinical study that led to FDA approval, 56 adults with acute

invasive aspergillosis received caspofungin as ‘‘salvage’’ therapy after failing

primary therapy for more than 1 week or developing significant nephrotoxicity.

More than 40% of the patients had a favorable response to therapy [111].

Additional patients have been enrolled in this trial, and to date, 45% (37 of 83)

have had a complete or partial response, including 50% (32 of 64) with

pulmonary aspergillosis and 23% (3 of 13) with disseminated infection [112].

Caspofungin has not been studied for use in primary therapy against inva-

sive aspergillosis.

A study comparing caspofungin and amphotericin B in 224 adults with

invasive candidiasis has been conducted. Response to caspofungin (n = 104;

73.4%) was slightly better than response to amphotericin B (n = 115; 61.7%)

[113]. Caspofungin was as effective as amphotericin B against all the major

species of Candida. Mortality was similar in both groups, and the proportion of

patients with drug-related adverse events was substantially higher in the

amphotericin B group. More recently, caspofungin (n = 556) was compared

with L-amphotericin B (n = 539) in febrile neutropenic patients, and overall

success was virtually identical (approximately 33%) [114].

Experimental echinocandins: micafungin and anidulafungin

Micafungin is an echinocandin lipopeptide compound [41,115,116] with a

half-life of approximately 12 hours. As with other echinocandins, it is fungicidal

against Candida and fungistatic against Aspergillus [117]. The highest drug

concentrations of this agent are detected in the lung, followed by the liver, spleen,

and kidney. Micafungin was undetectable in the CSF, but low levels were

detected in the brain tissue, choroidal layer, and vitreous humor, but not the

aqueous humor of the eye [99].

Several pediatric studies of micafungin have been completed. A phase I

single-dose, multicenter, open-label study evaluated three dosages (0.75 mg/kg/d,

1.5 mg/kg/d, and 3 mg/kg/d) in two infant weight groups (500–1000 g and

N1000 g). The mean serum concentration of micafungin was lower in the smaller

infants, the serum half-life was shorter, and clearance was more rapid. In the

neonates weighing 500 to 1000 g, the half-life was 5.5 hours with a clearance of

97.3 mL/h/kg. In the neonates weighing more than 1000 g, the haf-life increased

to 8 hours, whereas clearance decreased to 55.9 mL/h/kg. These findings com-

pare with the findings in children (age 2–8 years), where half-life was 12 hours,

and clearance was slowest at 32.2 mL/h/kg [118].

A study of micafungin in combination with a second antifungal agent in

pediatric and adult bone marrow transplant recipients with invasive aspergillosis

revealed an overall complete or partial response of approximately 40% [119]. A

study comparing prophylaxis in 882 stem cell transplant recipients found that

micafungin was more effective in preventing yeast and mold infections (80%)

than fluconazole (73.5%) [120]. Other studies have shown the efficacy of
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micafungin in the primary therapy of esophageal candidiasis [121] and as rescue

therapy in patients failing to respond to first-line antifungals [122].

Anidulafungin is a semisynthetic terphenyl-substituted antifungal derived

from echinocandin B, a lipopeptide fungal product [123]. It has linear pharma-

cokinetics [88] with the longest half-life of all the echinocandins (approximately

18 hours) [101,124]. Its in vitro activity is similar to that of the other

echinocandins [125]. Neither end-stage renal impairment nor dialysis substan-

tially alters the pharmacokinetics of anidulafungin [126]. Tissue concentrations

after multiple dosing were highest in lung and liver, followed by spleen and

kidney, with measurable concentrations in the brain tissue. The pharmacokinetics

showed approximately sixfold lower mean peak concentrations in plasma and

twofold lower area under the concentration-time curve values compared with

values with similar doses of capsofungin and micafungin. A study of 601 patients

with esophageal candidiasis compared anidulafungin with oral fluconazole and

found endoscopic similar success rates exceeding 95% [127]. A phase I/II dose

escalation study of anidulafungin involving five centers that enrolled children

age 2 to 17 years old with persistent neutropenia who were at risk for invasive

fungal infection is now complete, but results have not yet been presented.
Summary

Since the 1960s, there has been limited progress in the treatment of invasive

fungal infections, and the field of pediatric antifungal therapy has been largely

ignored. Although conventional amphotericin B was the drug of choice for many

invasive fungal infections, its clinical utility was thwarted by nephrotoxicity and

infusion-related toxicity. Lipid formulations have reduced the toxicity of am-

photericin B, and these agents have a role in the management of several specific

diseases, such as zygomycosis and others.

The preferred treatment for invasive aspergillosis has shifted to voriconazole,

with present debates centering on the possible use of combination antifungal

therapy. A reason for failure of therapy in children may be the use of an

inadequate dose of voriconazole, originally based on data derived from adults. A

knowledge of the differences in the pharmacokinetics of the drug in children and

adults results in more optimal dosing. Although voriconazole is a tremendous

mold-active agent, gaps in coverage, such as the emerging zygomycosis and non-

albicans Candida species, are important to address. Presently, investigational

posaconazole seems to have better activity against zygomycosis, but no

parenteral formulation of this drug is available. Although the extended half-life

of ravuconazole could play a role in prophylaxis or long-term intermittent ther-

apy, the drug is not yet available.

The echinocandin class presents one of the best options for therapy of

candidiasis, combining an excellent safety profile with an effective fungicidal

agent. Although caspofungin likely has some role in salvage therapy for

recalcitrant invasive aspergillosis, it may prove to be most valuable as an anti-
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Candida drug or possibly as part of combination therapy for invasive asper-

gillosis. Micafungin and anidulafungin have begun to acquire initial pediatric

dosing data, and these drugs may prove to be useful in children.

Few antifungal studies have been conducted in children. Although there have

been many phase III antifungal clinical trials in adults, there has never been

a large phase III antifungal clinical trial dedicated to pediatric patients.

Consequently, most information for the pediatrician has been extrapolated from

adult data. Through dedicated clinicians and collaboration, pediatric indications

and dosing strategies eventually will be discovered that will benefit pediatric

patients directly.
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