Acupuncture in patients with tension-type headache: randomised controlled trial

Dieter Melchart, Andrea Streng, Andrea Hoppe, Benno Brinkhaus, Claudia Witt, Stefan Wagenpfeil, Volker Pfaffenrath, Michael Hammes, Josef Hummelsberger, Dominik Irnich, Wolfgang Weidenhammer, Stefan N Willich and Klaus Linde

BMJ 2005;331:376-382; originally published online 29 Jul 2005; doi:10.1136/bmj.38512.405440.8F

Updated information and services can be found at:
http://bmj.com/cgi/content/full/331/7513/376

These include:

Data supplement
"Trial centres"
http://bmj.com/cgi/content/full/bmj.38512.405440.8F/DC1

References
This article cites 21 articles, 4 of which can be accessed free at:
http://bmj.com/cgi/content/full/331/7513/376#BIBL

Rapid responses
2 rapid responses have been posted to this article, which you can access for free at:
http://bmj.com/cgi/content/full/331/7513/376#responses

You can respond to this article at:
http://bmj.com/cgi/eletter-submit/331/7513/376

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections
Randomized Controlled Trials: examples (359 articles)
Other Neurology (3279 articles)
Complementary Medicine (216 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to BMJ go to:
http://bmj.bmjjournals.com/subscriptions/subscribe.shtml
Acupuncture in patients with tension-type headache: randomised controlled trial

Dieter Melchart, Andrea Streng, Andrea Hoppe, Benno Brinkhaus, Claudia Witt, Stefan Wagenpfeil, Volker Pfaffenrath, Michael Hammes, Josef Hummelsberger, Dominik Irnich, Wolfgang Weidenhammer, Stefan N Willich, Dieter Melchart, Andrea Streng, Andrea Hoppe, Benno Brinkhaus, Claudia Witt, Stefan Wagenpfeil, Volker Pfaffenrath, Michael Hammes, Josef Hummelsberger, Dominik Irnich, Wolfgang Weidenhammer, Stefan N Willich, Klaus Linde

Abstract

Objective To investigate the effectiveness of acupuncture compared with minimal acupuncture and with no acupuncture in patients with tension-type headache.

Design Three armed randomised controlled multicentre trial.

Setting 28 outpatient centres in Germany.

Participants 270 patients (74% women, mean age 43 (SD 13) years) with episodic or chronic tension-type headache.

Interventions Acupuncture, minimal acupuncture (superficial needling at non-acupuncture points), or waiting list control. Acupuncture and minimal acupuncture were administered by specialised physicians and consisted of 12 sessions per patient over eight weeks.

Main outcome measure Difference in numbers of days with headache between the four weeks before randomisation and weeks 9-12 after randomisation, as recorded by participants in headache diaries.

Results The number of days with headache decreased by 7.2 (SD 6.5) days in the acupuncture group compared with 6.6 (SD 6.8) days in the minimal acupuncture group and 1.5 (SD 3.7) days in the waiting list group (difference: acupuncture v minimal acupuncture, 0.6 days, 95% confidence interval – 1.5 to 2.6 days, P = 0.58; acupuncture v waiting list, 5.7 days, 3.9 to 7.5 days, P < 0.001). The proportion of responders (at least 50% reduction in days with headache) was 46% in the acupuncture group, 35% in the minimal acupuncture group, and 4% in the waiting list group.

Conclusions The acupuncture intervention investigated in this trial was more effective than no treatment but not significantly more effective than minimal acupuncture for the treatment of tension-type headache.

Trial registration number ISRCTN9737659.

Introduction

Tension-type headache is essentially defined as bilateral headache of a pressing or tightening quality without a known medical cause. Tension-type headache is classified as episodic if it occurs on less than 15 days a month and as chronic if it occurs more often. A survey from the United States found a one year prevalence of 38% for episodic tension-type headache and 2% for chronic tension-type headache. Acupuncture is widely used for the treatment of tension-type headache, but its effectiveness is controversial. In the acupuncture randomised trial in tension-type headache (ART-TTH), we investigated whether acupuncture reduced the frequency of headache more effectively than did minimal acupuncture (superficial needling at non-acupuncture points) or no acupuncture in patients with tension-type headache.

Methods

Protocol, design, and randomisation

ARF-TTH was a randomised multicentre trial comparing acupuncture, minimal acupuncture, and no acupuncture waiting list condition. Minimal acupuncture served as a sham intervention; we included the additional no acupuncture waiting list condition because minimal acupuncture is not a physiologically inert placebo. Patients were blinded to treatment in the acupuncture and minimal acupuncture arms of the study. Two blinded evaluators analysed headache diaries. The methods of the trial have been described in detail elsewhere.

After a baseline phase of four weeks, we used a centralised telephone randomisation procedure (random list generated with sample size 2.0 by the statistician) to randomise patients, stratified by centre (block size 12 unknown to trial physicians), in a 2:1:1 ratio (acupuncture:minimal acupuncture:waiting list). We used the 2:1:1 ratio to facilitate recruitment and increase the compliance of trial physicians. All study participants provided written, informed consent, and the study conformed to common guidelines for clinical trials (Declaration of Helsinki, ICH-GCP, including certification by external audit).

Participants

Inclusion criteria were a diagnosis of episodic or chronic tension-type headache according to the criteria of the International Headache Society, at least eight days with headache a month in the previous three months and in the baseline period, age 18-65 years, duration of symptoms at least 12 months, completed baseline headache diary, and written informed consent. Main exclusion criteria were additional migraine headache, secondary headaches, start of headaches after age 50, use of analgesics on more than 10 days a month, prophylactic headache treatment with drugs during the previous four weeks, and any acupuncture treatment during the previous 12 months or at any time if done by the participating trial physician. Most participants were recruited through reports in local newspapers; a minority were patients who spontaneously contacted trial centres.
Interventions

We developed the study interventions in a consensus process with German acupuncture experts and societies. Physicians trained (at least 140 hours, median 500 hours) and experienced (median 10 years) in acupuncture delivered the interventions. Both the acupuncture and minimal acupuncture treatments consisted of 12 sessions of 30 minutes, given over eight weeks (preferably two sessions in each of the first four weeks, followed by one session a week in the remaining four weeks).

Acupuncture treatment was semistandardised. All patients were treated at “basic” points bilaterally unless explicit reasons for not doing so were given; additional points could be chosen individually (box 1). We instructed physicians to achieve “de qi” (an irradiating feeling considered to be indicative of effective needling) if possible and to stimulate needles manually at least once during each session. The total number of needles was limited to 25 per session.

The number, length, and frequency of the sessions in the minimal acupuncture group were the same as for the acupuncture group. In each session, physicians needled at least five out of 10 predefined distant non-acupuncture points (box 2) bilaterally (at least 10 needles) and superficially using fine needles. Physicians avoided “de qi” and manual stimulation of the needles.

Patients in the waiting list control group did not receive any prophylactic treatment for their headaches for a period of 12 weeks after randomisation. After that time, they received 12 sessions of the acupuncture treatment described above.

All patients were allowed to treat acute headaches as needed. Treatment was supposed to follow current guidelines and had to be documented in the headache diary.

Patients were informed with respect to acupuncture and minimal acupuncture as follows: “In this study, different types of acupuncture will be compared. One type is similar to the minimal acupuncture as follows: “In this study, different types of acupuncture treatment described above.

Outcome measurement

All patients filled in headache diaries in the four weeks before randomisation (baseline phase), the 12 weeks after randomisation, and weeks 21 to 24 after randomisation. In addition, we asked patients to fill in a pain questionnaire before treatment, after 12 weeks, and after 24 weeks. This included the following validated scales: the German version of the pain disability index, a scale for assessing sensoric and affective aspects of pain (Schmerzempfindungs-Skala SES), the ADS depression scale, and the German version of the SF-36 to assess health related quality of life. The primary outcome measure was the difference in number of days with headache between the four weeks before randomisation (baseline phase) and weeks nine to 12 after randomisation.

To test blinding to treatment and assess the credibility of the different treatment methods, patients filled in a credibility questionnaire after the third acupuncture session. At the end of the study, patients were asked whether they thought that they had received acupuncture following the principles of Chinese medicine or the other type of acupuncture.

Statistical methods

We based confirmatory testing of the primary outcome measure and all main analyses (with SPSS 11.5) on the intention to treat population and used all available data. We used SOLAS 5.0 (Statistical Solutions, Cork, Ireland) to do sensitivity analyses for the primary outcome measure, replacing missing data with baseline values or multiple imputation. We tested a priori ordered two sided null hypotheses by using Student’s t test (significance level 0.05). In the first step we investigated whether acupuncture reduced the number of days with headache more than no treatment, and in the second step (only if the first null hypothesis was rejected) we investigated whether acupuncture was more efficacious than minimal acupuncture. We give exploratory analyses (analysis of covariance adjusting for baseline differences and χ² tests) for predefined secondary outcome measures. We did an additional per protocol analysis including only patients without major protocol violations until week 12.

We made the original sample size calculation for one sided testing. Under this premise we planned the study to have 80% power to detect a group difference of two days with headache assuming a standard deviation of five days (thus an effect size of 0.4) and a 20% dropout rate. However, we later decided to use
two sided testing to comply better with common standards. Before starting the analysis, and on the basis of the recommendation of the ethical review board, we decided to exclude the data from one centre that had included 26 patients, owing to repeated severe protocol deviations and the suspicion of data manipulation in some patients. We decided to do a sensitivity analysis including this centre’s data.

Results

Participants, treatment, and blinding
Between March 2002 and January 2004, approximately 2700 patients with headache expressed an interest in participating in the study; 524 entered the four week baseline period, and 296 patients recruited in 29 outpatient centres were randomised (fig 1). As described above, we excluded from the main analysis one trial centre with 26 patients, leaving 270 patients in the intention to treat population (132 acupuncture, 63 minimal acupuncture, 75 waiting list).

Groups were comparable at baseline in most respects (table 1). However, we observed some differences in previous use of acupuncture and in parts of the pain questionnaire. After three sessions, patients rated the credibility of acupuncture and minimal acupuncture very highly and very similarly (table 2). At the end of the study, patients’ guesses as to their allocation status did not differ significantly between groups, but patients in the acupuncture group guessed their allocation correctly slightly more often than did patients in the minimal acupuncture group.

Effectiveness
From baseline to week 9–12, the number of days with headache decreased by 7.2 (SD 6.5) days in the acupuncture group compared with 6.6 (SD 6.0) days in the minimal acupuncture group and 1.5 (SD 3.7) days in the waiting list group (difference:...
Compared with the waiting list control group, patients receiving acupuncture or minimal acupuncture fared significantly better for most secondary outcome measures; however, we found no significant differences between the acupuncture and the minimal acupuncture group (table 3). Differences compared with waiting list became apparent in the headache diary after the first four weeks of treatment and increased until week 12 (fig 2). The improvements seen in the acupuncture and minimal acupuncture group persisted during the follow-up period (table 4). The patients in the waiting list group who received acupuncture in weeks 13-20 also showed significant improvements after treatment, although not to the same extent as the patients who had received immediate treatment.

Table 1 Baseline characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All patients (n=270): No (%)</th>
<th>Acupuncture (n=132): No (%)</th>
<th>Minimal acupuncture (n=63): No (%)</th>
<th>Waiting list (n=75): No (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>199 (74)</td>
<td>95 (72)</td>
<td>48 (75)</td>
<td>56 (75)</td>
</tr>
<tr>
<td>Diagnosis according to IHS criteria:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Episodic tension-type headache</td>
<td>146 (54)</td>
<td>75 (57)</td>
<td>31 (49)</td>
<td>40 (53)</td>
</tr>
<tr>
<td>Chronic tension-type headache</td>
<td>124 (46)</td>
<td>57 (43)</td>
<td>32 (51)</td>
<td>35 (47)</td>
</tr>
<tr>
<td>Previous acupuncture (for any condition)</td>
<td>111 (41)</td>
<td>46 (35)</td>
<td>34 (54)</td>
<td>31 (41)</td>
</tr>
<tr>
<td>Acupuncture or waiting list</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current headaches particularly severe</td>
<td>65 (24)</td>
<td>31 (24)</td>
<td>13 (21)</td>
<td>21 (28)</td>
</tr>
<tr>
<td>Waiting list</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoid drugs</td>
<td>165 (61)</td>
<td>81 (61)</td>
<td>37 (59)</td>
<td>47 (63)</td>
</tr>
<tr>
<td>Other</td>
<td>33 (12)</td>
<td>14 (11)</td>
<td>9 (14)</td>
<td>10 (13)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>42.7 (13.2)</td>
<td>42.3 (13.5)</td>
<td>43.4 (12.9)</td>
<td>42.8 (13.2)</td>
</tr>
<tr>
<td>Body mass index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of disease (years)</td>
<td>14.5 (11.8)</td>
<td>13.7 (11.1)</td>
<td>16.8 (13.8)</td>
<td>14.1 (11.1)</td>
</tr>
<tr>
<td>Days with headache*</td>
<td>17.5 (6.8)</td>
<td>17.5 (6.9)</td>
<td>17.7 (6.7)</td>
<td>17.3 (6.9)</td>
</tr>
<tr>
<td>Headache score*</td>
<td>30.0 (13.5)</td>
<td>29.9 (14.1)</td>
<td>30.9 (12.8)</td>
<td>29.3 (13.0)</td>
</tr>
<tr>
<td>Days with more than mild headache*</td>
<td>9.7 (6.3)</td>
<td>8.8 (6.5)</td>
<td>10.0 (6.8)</td>
<td>9.4 (6.3)</td>
</tr>
<tr>
<td>Days with medication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disability (PDI)</td>
<td>22.4 (11.4)</td>
<td>21.4 (11.3)</td>
<td>22.0 (11.4)</td>
<td>24.6 (11.3)</td>
</tr>
<tr>
<td>SF-36 physical health‡</td>
<td>43.2 (7.2)</td>
<td>42.9 (7.2)</td>
<td>44.3 (6.8)</td>
<td>43.0 (7.5)</td>
</tr>
<tr>
<td>SF-36 mental health‡</td>
<td>44.2 (11.2)</td>
<td>45.8 (10.5)</td>
<td>44.1 (12.1)</td>
<td>41.4 (11.3)</td>
</tr>
<tr>
<td>Depression (ADS)</td>
<td>52.4 (8.9)</td>
<td>51.9 (8.3)</td>
<td>52.2 (10.7)</td>
<td>53.6 (8.6)</td>
</tr>
<tr>
<td>Pain sensitivity (SES t standard scores)</td>
<td>47.1 (7.5)</td>
<td>45.8 (6.3)</td>
<td>50.2 (6.6)</td>
<td>46.7 (7.9)</td>
</tr>
<tr>
<td>Pain affective (SES t standard scores)</td>
<td>49.3 (7.8)</td>
<td>47.5 (7.3)</td>
<td>50.6 (8.0)</td>
<td>51.5 (7.6)</td>
</tr>
<tr>
<td>Average pain (scale 1-10)</td>
<td>4.7 (1.6)</td>
<td>4.5 (1.5)</td>
<td>4.9 (1.5)</td>
<td>4.9 (1.2)</td>
</tr>
</tbody>
</table>

ADS=depression scale (Allgemeine Depressionsskala); IHS=International Headache Society; PDI=pain disability index; SES=questionnaire for assessing sensory and affective aspects of pain (Schmerzempfindungsskala).

*Per four weeks.

†Headache score=sum of intensity ratings (1=mild, 2=moderate, 3=severe) of days with headache. Higher values indicate better status.

Table 2 Questions about credibility of treatment after third treatment session (rating scale with 0=disagreement and 6=maximal agreement) and guess at end of week 24 as to which type of acupuncture had been received

<table>
<thead>
<tr>
<th>Credibility after third session</th>
<th>Acupuncture</th>
<th>Minimal acupuncture</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement expected</td>
<td>4.6 (1.0)</td>
<td>4.6 (1.1)</td>
<td>0.70</td>
</tr>
<tr>
<td>Accommodation to others</td>
<td>5.3 (0.9)</td>
<td>5.4 (1.3)</td>
<td>0.35</td>
</tr>
<tr>
<td>Treatment logical</td>
<td>4.5 (1.2)</td>
<td>4.8 (1.3)</td>
<td>0.22</td>
</tr>
<tr>
<td>Effective also for other diseases</td>
<td>5.6 (0.7)</td>
<td>5.6 (0.6)</td>
<td>0.46</td>
</tr>
<tr>
<td>Guess at end of week 24</td>
<td>No (%) (n=113)</td>
<td>No (%) (n=64)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

†Two sided t test.

Fig 2 Mean (95% confidence interval) number of days with headache. Patients in the waiting list group received acupuncture after week 12 (dotted bars)
Within the 24 weeks after randomisation a total of three serious adverse events (two acupuncture, one waiting list) were documented. All cases were hospital stays considered unrelated to the study (two diagnostic interventions, one elective surgery). Twenty three patients in the acupuncture group reported a total of 30 side effects compared with 11 patients in the minimal acupuncture group, which included up to a maximum of 69 patients, our study has a much larger sample size. Other advantages include adherence to current guidelines for headache trials, strictly concealed central randomisation, an assessment of the credibility of interventions, blinded evaluation of diaries, interventions based on expert consensus provided by qualified and experienced medical acupuncturists, high follow-up rates, and an external audit of the quality of data.

Although the groups were comparable for sociodemographic characteristics and headache outcomes at baseline, differences existed for some scores on the pain questionnaire in which included up to a maximum of 69 patients.
Papers

spite of randomisation. The credibility of acupuncture and minimal acupuncture was rated very similarly by patients, but guesses about treatment allocation at the end of the trial differed slightly between the acupuncture and minimal acupuncture groups, which might indicate some degree of unblinding. Trial physicians could not be blinded. Therefore, the small non-significant differences between acupuncture and minimal acupuncture could be due to bias. It was not possible to blind waiting list patients, so we cannot rule out that the difference from acupuncture and minimal acupuncture is overestimated. However, several arguments exist as to why the influence of bias should be limited. A slight improvement over time occurred in the waiting list group in the first 12 weeks; this was probably due to the natural course of the disease. This improvement, however, makes it unlikely that patients in the waiting list group reported negatively biased data in their diaries. Use of analgesics was lower in both the acupuncture and minimal acupuncture groups than in the waiting list group, making an influence of effective co-interventions unlikely. Follow-up data confirmed the improvements observed after treatment. After completion of the treatment, patients had no further contact with acupuncturists; they received and sent diaries and questionnaires directly to the study centre, decreasing the likelihood of positively biased diary data.

Interpretation of findings

The lack of significant differences between acupuncture and minimal acupuncture in our study indicates that point location and other aspects considered relevant for traditional Chinese acupuncture did not make a major difference. Although our treatment strategy was consensus-based, we cannot rule out the possibility that a different approach would have yielded a different result. Our findings are similar to those of three of the available trials, whereas two found significant effects of acupuncture over sham acupuncture. A recent large, pragmatic trial from the United Kingdom found that adding acupuncture to general practitioners’ care for headache was more effective than general practitioners’ care alone. This trial mainly included patients with migraine, however, and subgroup analyses suggested that patients with tension-type headache might benefit less.

An intriguing finding of our trial is the strong and lasting response to minimal acupuncture. The improvement over, and the differences compared with, the waiting list group are clearly clinically relevant. The minimal acupuncture intervention in our study was designed to minimise potential physiological effects by needling superficially at points distant from classical sites as well as by using fewer needles than in the acupuncture group. However, it cannot be considered completely inert. The physiological effects of superficial needling distant from classical acupuncture sites may include local alteration in circulation as well as a wide range of neurophysiological and neurochemical responses such as release of neurotransmitters or activation of segmental and intersegmental antinociceptive systems.

Another explanation for the improvements we observed could be that acupuncture and minimal acupuncture are associated with particularly potent placebo effects. Some evidence shows that complex medical interventions or medical devices have higher placebo effects than placebo drugs. Acupuncture treatment has characteristics that are considered relevant in the context of placebo effects. It has an “exotic” conceptual framework with emphasis on the “individual as a whole,” it is associated with frequent patient-practitioner contacts, and it includes the repeated “ritual” of needling. Finally, the high expectations of participants and our way of informing patients might have been a relevant factor.

Conclusions

A significant proportion of patients with tension-type headache benefited from acupuncture. The size of the effect seems comparable to those of accepted treatments for tension-type headache and is larger than that found in most trials comparing placebo interventions with no treatment. Acupuncture was well tolerated, and improvements lasted several months after completion of treatment. However, minimal acupuncture—the superficial needling of non-acupuncture points—had a similar effect.

We thank the acupuncture experts who participated in the consensus process to establish the trial interventions. Trial centres contributing to the main analysis are listed on bmj.com. The trial was initiated after a request from German health authorities (Federal Committee of Physicians and Social Health Insurance Companies, German Federal Social Insurance Authority) and sponsored by German Social Health Insurance Companies. The health authorities had requested a randomised trial including a sham control condition with an observation period of at least six months to decide whether acupuncture should be included in routine reimbursement. All other decisions on design, data collection, analysis, and interpretation, as well as publication, were the responsibility of the researchers.

Contributors: All authors participated in the planning of the protocol and review of manuscript drafts. DM, KL, AS, BB, and CW were responsible for general trial coordination, AS and AH were responsible for monitoring trial centres’ activities, SW, WW, and KL did the statistical analysis, SW was responsible for randomisation. VP provided neurological expertise. MH, JH, and DI developed the acupuncture intervention. SNW and DM had general medical and scientific responsibility. DM, AS, BB, CW, SNW, and KL are guarantors.

Funding: Study activities at the Centre for Complementary Medicine Research, Munich, were funded by the following social health insurance funds: Deutsche Angestellt-Krankenkasse (DAK), Hamburg: Barmer Ersatzkasse (BEK), Wuppertal; Kaufmännische Krankenkasse (KKH), Hanover; Hamburg-Münchener Krankenkasse (HMK), Hamburg; Hamburger Krankenanstalten Krankenkasse (HEK), Hamburg; Gmünder Ersatzkasse (GEK), Schwäbisch Gmünd; HZK Krankenanstalten für Bau- und Holzberufe, Hamburg; Meinl-Ersatzkasse, Solingen; Krankenkasse Eintracht Heusenstamm (KEH), Heusenstamm; Rechberucher Krankenkasse (BBK), Hannover. Study activities at the Institute for Social Medicine, Epidemiology and Health Economics, Berlin were funded by the following social health insurance funds: Techniker Krankenkasse (TK), Hamburg; Bietigheimer Krankenkasse (BBK) Bosch; BKK Daimler Chrysler; BKK Betriebskrankenkassen; BKK BMW; BKK Siemens; BKK Deutsche Bank; BKK Hoechst; BKK Hypo Vereinsbank; BKK Ford; BKK Opel; BKK Allianz; BKK Vereins- und Westbank; Handelskrankenkasse (HKK).

Competing interests: MH, JH, and DI have received fees for teaching acupuncture in courses of professional societies. All other authors: none declared.

Ethical approval: The protocol was approved by all relevant local ethics review boards.
8 Gerbershagen HU, Nigges F, Saile E, Dillmann U. [The multidimensional German pain questionnaire (MDPQ).] *Schmerz* 1994;8:100-10.
10 Bullinger M, Kirchberger I. [SF-36 Fragebogen zum Gesundheitszustand.] *Schmerz* 2002;1;179-84.
(Accepted 27 May 2005)
doi 10.1136/bmj.38512.405440.8F

Centre for Complementary Medicine Research, Department of Internal Medicine II, Technische Universität München, Kaisersstr 9, 80801 Munich, Germany
Dieter Melchart director
Andrea Streng researcher
Andrea Hoppe researcher
Wolfgang Weidenhammer biostatistician
Klaus Linde epidemiologist
Institute of Medical Statistics and Epidemiology, Technische Universität München Stefan Wagempfeil biostatistician
Department of Neurology, Technische Universität München Michael Hammers neurologist
Institute of Social Medicine, Epidemiology, and Health Economics, Charité University Medical Centre, Berlin, Germany
Berno Brinkhaus internist
Claussia Witt epidemiologist
Stefan N Willich professor
Private practice, Munich
Volker Pfaffenrath neurologist
Jörg Hummelsberger internist
Department of Anaesthesiology, University of Munich, Munich
Dominik Irnich anaesthesitist
Division of Complementary Medicine, Department of Internal Medicine, University Hospital Zurich, Switzerland
Dieter Melchart researcher
Correspondence to: K Linde Klaus.Linde@lrz.tu-muenchen.de