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The successful application of posi-
tional cloning, the process of disease
susceptibility gene identification us-

ing gene mapping techniques, to identify
the gene underlying cystic fibrosis (1)
opened the era of gene hunting. The sub-
sequent identification of susceptibility
genes underlying numerous monogenic
disorders led to the possibility that sus-
ceptibility genes for complex diseases
could also be identified using the posi-
tional cloning approach. This, coupled
with advances in both genotyping tech-
nology and the identification of large
numbers of microsatellite markers across
the genome, led to numerous genome-
wide scans to identify susceptibility genes
for various forms of diabetes. However,
despite the genetic screening of genes
known to be involved in the biology of
diabetes (candidate genes) and positional
cloning approaches, to date, few suscep-
tibility genes for diabetes have been iden-
tified. Even less is known about the
genetic basis for gestational diabetes mel-
litus (GDM). The inability to readily iden-
tify susceptibility genes for diabetes can
be attributed to a variety of issues, includ-
ing insufficient statistical power, etiologic
heterogeneity, and the confounding effect
of interactions with environmental fac-
tors. These same problems will likely ap-
ply to GDM, which appears to represent
early stages of many forms of diabetes

outside of pregnancy. Here, we briefly re-
view the current state of knowledge re-
garding the genetics of diabetes and
discuss specific issues regarding the ge-
netics of GDM.

GENETICS OF DIABETES

Type 1 diabetes and rare/monogenic
forms of diabetes
The HLA region on chromosome 6 was
identified very early on as a major suscep-
tibility gene for type 1 diabetes (2–4),
with haplotypes within the HLA region
accounting for as much as 50% of cases of
type 1 diabetes in Caucasians (4). While
the contribution of HLA to genetic sus-
ceptibility to type 1 diabetes was readily
identified, numerous genome scans have
also identified at least 16 additional loci
across the genome that may harbor sus-
ceptibility genes for type 1 diabetes (5).
However, identification of the specific
genes underlying these linkage regions
has proven to be difficult, partly because
of the presence of the large genetic con-
tribution of HLA alleles.

Greater success has been found in
identifying susceptibility genes for mono-
genic (6–10), rare (11,12), or syndromic
(13) forms of diabetes. Rare variation in
the insulin gene results in an autosomal
dominant form of diabetes (11), and the
3,243 A-G mutation in the mitochondrial

tRNA (Leu-UUR) gene results in mater-
nally inherited diabetes and deafness syn-
drome (12,14). Susceptibility genes
identified in syndromic forms of diabetes
include the Wolfram Syndrome gene
(WSF1) and mutations in translation
initiation factor 2-� kinase-3 gene
(EIF2AK3), resulting in Wolcott-Rallison
syndrome. Genes underlying susceptibil-
ity for the six different forms of maturity-
onset diabetes of the young (MODY) have
been identified (6–10,15). MODY is a
form of diabetes characterized by an early
age of onset, autosomal dominant inheri-
tance, and �-cell dysfunction in the ab-
sence of insulin resistance (15). All six
MODY genes are associated with the pan-
creatic �-cell, either altering transcrip-
tional regulation or possibly altering
�-cell mass or turnover (15).

The physiological consequence of ge-
netic variation in MODY genes was char-
acterized in a series of elegant studies by
Polonsky and colleagues (16–18). Insulin
secretory response to intravenous glucose
infusion was assessed in nondiabetic pa-
tients and patients with known MODY
variants in glucokinase (GCK, MODY2),
hepatocyte nuclear factor-1� (HNF1A,
MODY3), and hepatocyte nuclear fac-
tor-4� (HNF4A, MODY1). These studies
demonstrated that the insulin secretory
dose-response in patients with MODY
susceptibility variants in GCK was less re-
sponsive and generally right-shifted com-
pared with nondiabetic patients. In
contrast, patients with MODY suscepti-
bility variants in HNF1A or HNF4A ap-
peared to have a normal secretory dose-
response at lower glucose concentrations,
but had maximal secretory responses that
were substantially blunted compared
with nondiabetic patients. Interestingly,
the dose-response curves for HNF1A and
HNF4A appeared to have similar charac-
teristics, suggesting that these variants
may have similar effects on the �-cell and
overall insulin secretory response. How-
ever, subsequent studies in which patients
were exposed to prolonged hyperglycemia,
brought about by a 42-h glucose infusion,
revealed that although blunted, increased
insulin secretion observed after prolonged
hyperglycemia, the so-called “priming ef-
fect” (19), could be observed in patients
with HNF1A variants, whereas the priming
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effect was absent in patient with HNF4A
variants.

Type 2 diabetes
One of the first type 2 diabetes suscepti-
bility genes was identified not by linkage
analysis, but by association (20). Deeb et
al. (20) observed association between the
Pro12Ala polymorphism in peroxisome
proliferator–activated receptor-� and
BMI and insulin sensitivity in a sample of
Finnish subjects. Individuals with at least
one copy of Ala had a lower BMI and a
higher insulin sensitivity compared with
individuals homozygous for Pro. In addi-
tion, they observed a significantly in-
creased risk of type 2 diabetes (odds
ratio � 4.25) for individuals homozygous
for Pro in a sample of Japanese Americans.
The lower frequency Ala allele appeared
to play a “protective” role against type 2
diabetes, since the Ala allele was also as-
sociated with a lower transactivation of
response elements and therefore higher
insulin sensitivity (20).

Peroxisome proliferator–activated re-
ceptor-� is a nuclear receptor involved in
adipocyte differentiation (21) and a target
for the thiazolidinedione class of insulin-
sensitizing drugs (22), making it an at-
tractive candidate gene for type 2
diabetes. The initial report by Deeb et al.
(20) led many groups to assess the
Pro12Ala polymorphism, resulting in a
variety of positive and negative associa-
tions. This led to some question as to
whether Pro12Ala was a true diabetes sus-
ceptibility variant. However, this was re-
solved by a meta-analysis performed by
Altshuler et al. (23). In their analysis of
over 3,000 subjects, Altshuler et al. ob-
served a modest but significant genotype
relative risk (RR � 1.25) for type 2 diabe-
tes associated with the Pro allele (23).
When these results were combined with
previously published reports in a meta-
analysis, a significant protective effect for
the Ala allele with a risk ratio of 0.79 was
observed (23).

Over 25 genome-wide linkage scans
for type 2 diabetes have been completed
to date (24). Despite the large number of
studies, very few regions of the genome
showed common evidence for linkage
across studies. Regions showing the great-
est replication among studies include
chromosomes 1q, 12q, and 20q. Initially,
seven studies showed overlapping evi-
dence for linkage to chromosome 1q (24).
This led to the formation of the Interna-
tional Type 2 Diabetes 1q Consortium, in
which investigators from multiple studies

are pooling samples, resources, and an ef-
fort to fine-map susceptibility genes un-
derlying this region.

One of the first genome-wide scans to
be published came from Hanis et al. (25),
who reported linkage results from Mexi-
can Americans from Starr County, TX.
The strongest linkage signal was observed
on chromosome 2q, with the locus being
dubbed NIDDM1. Subsequent analyses
and fine-mapping efforts of this region led
to the first type 2 diabetes susceptibility
gene to be identified via positional clon-
ing, calpain-10 (CAPN10), a ubiquitously
expressed member of the calpain-like cys-
teine protease family (26). Three single-
nucleotide polymorphisms (SNPs), SNP-
43, -19, and -63, formed a high-risk
haplotype within the Starr County Mexi-
can-American sample. As with peroxi-
some proliferator–activated receptor-�,
subsequent studies have reported a mix-
ture of both positive and negative associ-
ations in other populations leading to
extensive discussion of whether CAPN10
could be classified as a type 2 diabetes
susceptibility gene. Evans et al. (27) were
the first to demonstrate that another SNP
with CAPN10, SNP-44, located 11 bp
from SNP-43, was associated with type 2
diabetes in Caucasian subjects from the
U.K. A subsequent meta-analysis by
Weedon et al. (28) examined whether
SNP-44 was associated with type 2 diabe-
tes). Their analysis included Asian, Mex-
ican-American, and Caucasian samples
and concluded that CAPN10 was associ-
ated with an overall modest increase in
risk for type 2 diabetes (odds ratio �
1.17). However, examination of the com-
bined Mexican-American samples alone
suggests CAPN10 may be associated with
a higher risk for type 2 diabetes in this
specific ethnic group (odds ratio � 2.13),
compared with the Asian (odds ratio �
1.09) and Caucasian (odds ratio � 1.17)
samples.

Most recently, the DeCode group at-
tempting to positionally clone genes for a
variety of common diseases reported as-
sociation between type 2 diabetes and
variation in the gene for transcription fac-
tor 7-like 2 (TCF7L2) (29). The initial ge-
nome-wide linkage analysis performed in
large families from the population of Ice-
land revealed evidence for linkage on
chromosome 10 (30). Subsequent fine-
mapping of the chromosome 10 interval
of interest revealed a microsatellite
marker, DG10S478, to be associated with
type 2 diabetes. This association was rep-
licated in both Danish and U.S. Caucasian

samples. Individuals heterozygous for the
risk allele had a relative risk for type 2
diabetes of 1.45, whereas individuals ho-
mozygous for the risk allele had a relative
risk of 2.41. The mechanism by which
TCF7L2 confers risk for type 2 diabetes is
unknown, but it has been hypothesized
that it may regulate proglucagon gene ex-
pression in the enteroendocrine cells
(29).

Chromosome 20
Linkage to chromosome 20q was also ob-
served for multiple studies and was the
impetus for the formation of the Interna-
tional Type 2 Diabetes Linkage Consor-
tium. The 20q region was independently
fine-mapped by several groups, resulting
in the identification of a novel glucose
transporter (SLC2A10) (31) that does not
appear to confer susceptibility to type 2
diabetes (32,33), along with two type 2
diabetes susceptibility genes: protein-
tyrosine phosphatase, nonreceptor-type 1
(PTPN1), and hepatocyte nuclear fac-
tor-4� (HNF4A). PTPN1 was first shown
to be associated with type 2 diabetes in
patients with diabetes and end-stage renal
disease and participants of the Diabetes
Heart Study (34). Subsequently, variation
in this gene was also shown to be associ-
ated with insulin resistance and fasting
glucose in Hispanic Americans from the
Insulin Resistance Atherosclerosis Study
Family Study (35). However, in one of the
largest association studies of type 2 diabe-
tes with over 3,000 cases and 3,000 con-
trol subjects from mainly Northern
European Caucasian samples, no evi-
dence for association with type 2 diabetes
was found for single variants within
PTPN1 or with observed haplotypes (36).
The fall and rise of HNF4A. The second
susceptibility gene to be identified in the
20q region is HNF4A, already described
above as a susceptibility gene for MODY.
HNF4A was initially rejected by one study
as a type 2 diabetes susceptibility gene.
The Finland-U.S. Investigation of Non-
Insulin-Dependent Diabetes Mellitus
(FUSION) study (37), an effort to posi-
tionally clone type 2 diabetes susceptibil-
ity genes in the Finnish population, was
one of several groups (38–41) showing
evidence for linkage in the 20q region
(42). Because HNF4A fell within the link-
age region and given that coding variants
were known to confer susceptibility to
MODY1, Ghosh et al. (42) sequenced this
gene and tested variants for association
for type 2 diabetes. None of the variants
they identified were associated with type
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2 diabetes, leading them to conclude that
variation in HNF4A was “. . . unlikely to
account for the linkage results on chro-
mosome 20q.”

However, �5 years later, the FU-
SION group along with Love-Gregory et
al., jointly reported association between
variation in the P2 promoter region of
HNF4A and type 2 diabetes (43,44).
Love-Gregory et al. (44), who were study-
ing the Ashkenazi Jewish population, and
the FUSION study, observed the associa-
tions independently while fine-mapping
the 20q region. Both groups subsequently
collaborated to ensure that common vari-
ants were genotyped in both samples, re-
sulting in common SNPs showing
association with type 2 diabetes in the P2
promoter region. In both studies, the as-
sociated SNPs accounted for a significant
fraction of the evidence for type 2 diabetes
in the 20q region (43,44). Type 2 diabe-
tes–related quantitative trait data were
not available in the Ashkenazi Jewish
sample, but FUSION observed associa-
tion between variation in the P2 promoter
region and acute insulin response and dis-
position index in offspring of their af-
fected patients (43), consistent with the
presumed effect of HNF4A within the
�-cell. The association between variation
in the P2 promoter region of HNF4A and
type 2 diabetes has been replicated in
other populations (45–47).

GENETICS OF GDM

Familial clustering
So what about GDM? Is there a genetic
basis for GDM? Surprisingly, there has
been relatively little research in the area of
GDM genetics per se. An essential first
step in genetics research has been the de-
termination of evidence for a genetic basis
for the disease. This can come in the form
of twin concordance studies or estimates
of familial risk or heritability. However,
performing such studies in a prospective
fashion is fraught with numerous difficul-
ties, primarily the need to identify women
who will become pregnant. Studies are
also difficult to perform in a retrospective
fashion. The clinical definition for GDM
has evolved over the years and differs
slightly among countries (48–51). Fur-
thermore, there has not been consistent
screening for GDM, leading to possible
bias in ascertainment, e.g., missed cases.
Finally, there are difficulties in ascertain-
ing families with multiple cases of GDM,
which is partly related to the relatively
low prevalence of GDM. There has been,

to our knowledge, only one unpublished
attempt to estimate familiality of GDM. In
1999, Williams and colleagues used the
statewide medical record system in the
state of Washington to identify and link
sisters diagnosed with GDM using Inter-
national Classification of Diseases, Ninth Re-
vision (ICD-9), coding. Based on their
initial screening, they estimated that the
sibling risk ratio for GDM was 1.75 (M.
Williams, personal communication), sug-
gesting some evidence for a genetic basis
for GDM. This risk, likely an underesti-
mate, is significantly lower than the
estimated sibling risk ratio for type 2 dia-
betes, which ranges from 2 to 4 (52).

The question of a genetic basis for
GDM, however, is also closely tied to the
debate of whether GDM is a unique dis-
ease state or whether pregnancy with its
associated metabolic derangements sim-
ply provides us with a crystal ball with
which to identify women who are suscep-
tible to hyperglycemia and subsequent
development of diabetes. If genetic vari-
ants associated with type 1 or type 2 dia-
betes are also associated with GDM, from
a purely genetic perspective, it would be
difficult to argue a unique genetic predis-
position for GDM. This does not take into
account the possibility of unique environ-
mental exposures related to pregnancy
that may interact with genetic variants to
alter disease risk. Also, this does not ne-
gate the importance of using genetic in-
formation to improve treatment for GDM
and minimize the deleterious effect of hy-
perglycemia on fetal outcomes.

There are studies that have examined
the familial clustering of GDM and type 1
and type 2 diabetes. Examples include the
studies of Dorner et al. (53), who showed
increased familial aggregation of diabetes
on the maternal side of offspring with
type 1 diabetes whose mothers had GDM.
Similarly, there is evidence for clustering
of type 2 diabetes and impaired glucose
tolerance in families with a GDM (54) and
evidence for higher prevalence of type 2
diabetes in mothers of women with GDM
(55). Thus, there is evidence of some link
between both autoimmune and nonauto-
immune forms of diabetes and GDM.

Candidate genes
Candidate genes related to both autoim-
mune and nonautoimmune forms of
GDM have been assessed in a variety of
cohorts. Freinkel et al. (56) examined
whether HLA antigens were associated
with GDM. They observed that HLA DR3
and DR4 antigens were uncommon over-

all, but nonetheless in higher frequency in
women with GDM than in women with
normal pregnancies. Similarly, Ober et al.
(57) reported association between varia-
tion in the insulin receptor (INSR) in Cau-
casian and African-American women
with GDM. They also noted that variation
in INSR appeared to interact with both
BMI and history of diabetes in mothers
with GDM. Among Caucasian women,
INSR variants also appeared to interact
with variation in insulin-like growth fac-
tor-2 (IGF2). No associations between
INSR and IGF2 were observed in Hispanic
women with GDM (57).

There have also been several reports
of association between variation in GCK
and GDM (58–63). Stoffel et al. (58) es-
timated that the frequency of GCK vari-
ants in GDM was �5%, by extrapolating
observations from 40 women with GDM.
The relatively low frequency of GCK vari-
ants among GDM subjects was also con-
firmed by others (60,61). Despite the low
frequency, the important contribution of
GCK variation to risk for GDM can also be
observe in families of MODY2 patients.
Saker et al. (60) noted that a large propor-
tion of female members of MODY2 fami-
lies present with GDM. They further
speculated that because variation in GCK
typically results in subclinical hypergly-
cemia, the frequency of GCK variants may
be higher and only detectable upon preg-
nancy (60). This possibility was con-
firmed by Ellard et al. (62) who used
highly selective clinical criteria to select
patients with GDM and tested whether
they carried GCK variants (62). Their data
suggest that the prevalence of GCK vari-
ants may be as high as 80% in a small
subset of women with GDM selected by
highly specific clinical criteria.
HNF4A in GDM. Studies by a variety of
investigators have identified a �-cell de-
fect as being one of the primary character-
istics of GDM (64–67). Given that �-cell
function is a highly heritable trait (68–
71), we became interested in trying to
identify genes underlying �-cell dysfunc-
tion observed in GDM. This resulted in
the BetaGene study, in which we are re-
cruiting Mexican-American families of a
proband with previous GDM (71,72).
The reported associations between varia-
tion in the P2 promoter region of HNF4A
and type 2 diabetes (43,44,46,73) led us
to examine whether these variants might
be associated with diabetes-related quan-
titative traits. Muller et al. (73) examined
these variants for association with type 2
diabetes–related quantitative traits in
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Pima Indians and only observed modest
association with insulin resistance, as as-
sessed by the euglycemic glucose clamp.
In the previous reports by Silander et al.
(43) and Love-Gregory et al. (44), the fre-
quency of the minor allele for the associ-
ated SNP (rs2144908) was between 16
and 27%, depending on the sample. In
contrast, the same allele had a frequency
of 49% in the Mexican-American sample
from the BetaGene study (72). When we
examined this SNP for association with
type 2 diabetes–related phenotypes, we
observed a significant association with
disposition index (P � 0.035) under an
additive genetic model. Disposition index
is a measure of �-cell compensation
(67,74), and this association is consistent
with the known biologic function of
HNF4A in the pancreatic �-cells (75).
Thus, variation in HNF4A may contribute
to the �-cell dysfunction observed in
GDM.

THE FUTURE — The field of genetics
has come a long way since the days of
Gregor Mendel and his pea experiments.
During a period when positional cloning
of complex disease genes by linkage anal-
ysis using microsatellite markers was
reaching its zenith, a landmark article by
Risch and Merikangas (76) appeared in
the literature. This article provided a the-
oretical argument that large-scale associ-
ation analysis was statistically more
powerful than linkage analysis and there-
fore the preferable approach to identify
genes underlying complex diseases. In
that article, the authors are quoted as say-
ing, “. . . imagine the time when all hu-
man genes (say 100,000 in total) have
been found and that simple, diallelic
polymorphisms in these genes have been
identified.” Although far from reality at
the time of publication, rapid advances in
genotyping technology (77), drastic re-
ductions in genotyping costs, the se-
quencing of the human genome (78,79),
and the recent completion of the HapMap
project (80) have now made whole ge-
nome association analysis a reality. These
advances have now made it possible to
select 250,000 to 500,000 SNPs across
the human genome and rapidly genotype
them in samples of 2,000–3,000 subjects
in an affordable manner.

What does this new era of whole ge-
nome association mean for the genetics of
GDM? It may now be possible to identify
large case-control samples and perform
whole genome association to identify re-
gions of the genome harboring suscepti-

bility genes for GDM. The unanswered
question of whether GDM per se has a
genetic basis may also be indirectly ad-
dressed using whole genome association
by incorporating carefully selected sam-
ples of type 2 diabetes cases as a second-
ary contrast group into the study design.
SNPs showing association with GDM, but
not type 2 diabetes, may represent sus-
ceptibility genes unique to GDM. Finally,
the identification of genetic variants un-
derlying disease alone will not have a ma-
jor impact on clinical care for patients
with GDM. Like the MODY studies of Po-
lonsky and his colleagues (16–18), addi-
tional molecular and biochemical studies,
and most importantly, clinical studies
must be performed to understand the
physiological and clinical consequences
of genetic variation. Finally, we will need
to assess how to maximize genetic infor-
mation and how to best incorporate it into
the clinical care setting.
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