Endoscopic hemostasis of gastrointestinal bleeding can be accomplished by chemical, thermal, and mechanical means. The role of detachable snares or endoloops has been widely described in mechanical hemostasis, and this manuscript reviews their history, indications for use, and the endoscopic techniques involved. Some novel clinical applications for detachable snares will also be reviewed. Clinical evidence supports their use in the management of postpolypectomy bleeding, bleeding from esophageal and gastric varices, and angiodysplasias. Prospective randomized controlled trials utilizing this device are few in number and are still needed to define their role in the field of gastrointestinal endoscopy.

Device Operation

Detachable Snare

Operation of the device involves four simple steps as shown in the Figure 1.

Mini-Detachable Snare

Operation of this device is similar to the use of a detachable snare except that it requires prelooping of the snare in a ligation chamber attached to the distal end of the endoscope, followed by suction, ligation, and release of the loop (Fig. 2).

Ligation of Polyps: Technique

Endoscope

An instrument with a minimum working channel of 2.8-mm diameter is required for insertion of an endoloop (outer diameter of endoloop sheath, 2.5 mm). Endoscope with a larger channel is preferred, and a two-channel endoscope allows passage of a grasping forceps through the second channel to maneuver a large polyp into the floppy endoloop.

Positioning the Target Lesion

The target lesion should be positioned at the 5- to 7-o’clock position to facilitate loop placement successfully.

Preligations

1. Controlled ligation without transaction.

 Tactile sensation alone may not be helpful in deciding when to stop closing the loop. If the ligation is too tight, the polyp can...
be transected and precipitate bleeding. Similarly, if the ligation is too loose, the snare is ineffective in preventing or controlling bleeding. Placing a mark on the loop tightening silicon stopper provides endoscopists the benefit of visual confirmation of snare tightening around the stalk of the polyp, in addition to tactile sensation.³

Figure 1 (A) Steps involved in snare ligation of a polyp. (B) Steps for snare ligation of varices.

Figure 2 (A) Large pedunculated polyp seen at colonoscopy. (B) Placement of Endoloop around polyp stalk. (C) Tightening of rubber stopper to tamponade any feeder vessels in the polyp stalk. (D) Endoloop fully deployed on polyp stalk. (E) Placement of diathermy snare above endoloop. (F) Endoloop in place following hot snare polypectomy. (Image courtesy of Dr. Roy Soetikno.)
Table 1 Applications of Endo-Loop, Poly-Loop, and Mini-Loop

<table>
<thead>
<tr>
<th>I. ENDO-LOOP and POLY-LOOP</th>
<th>A. Hemostasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSTPOLYPECTOMY BLEEDING</td>
<td></td>
</tr>
<tr>
<td>POLYPOID AVMS</td>
<td></td>
</tr>
<tr>
<td>ADJUNCT TO CLIP HEMOSTASIS</td>
<td></td>
</tr>
<tr>
<td>B. ABLATION</td>
<td></td>
</tr>
<tr>
<td>COLONIC LIPOMA</td>
<td></td>
</tr>
<tr>
<td>LYMPHANGIOMA</td>
<td></td>
</tr>
<tr>
<td>C. CLOSURE</td>
<td></td>
</tr>
<tr>
<td>COLONIC AND ESOPHAGEAL FISTULA</td>
<td></td>
</tr>
<tr>
<td>D. RETRIEVAL</td>
<td></td>
</tr>
<tr>
<td>SELF-EXPANDING METAL STENTS</td>
<td></td>
</tr>
</tbody>
</table>

II. MINI-LOOP	A. HEMOSTASIS
	ESOPHAGEAL VARICEAL BLEEDING
	GASTRIC VARICEAL BLEEDING

2. Avoid endoloop use in thin stalked polyps (<5 mm) and semipedunculated polyps.

Endoloop is likely to transect a thin stalked polyp and precipitate bleeding. Semipedunculated polyps is a relative contra-indication as the loop tends to slip off the short stalk after snare polypectomy and may precipitate bleeding.

3. Avoid endoloop use to control of bleeding from a short and residual stalk.

In order for the endoloop to be successful, there should be an adequate length of residual stalk for the endoloop to hold on to it. Short stalk tends to recede and flatten out with dislodgement of the loop. Hence, other techniques such as epinephrine injection and clip application should be considered instead of endoloop ligation in this clinical scenario.

Ligation of Varices: Technique Using Mini-Detachable Loop

There is no reported experience with this technique in the USA.

Device Assembly

A transparent ligation chamber with a rim on the inside is fitted onto the tip of an endoscope. A mini-detachable, oval-shaped nylon loop with a maximum diameter of 11 mm is inserted into the accessory channel of the endoscope until it opens at the rim of the ligation chamber.

Variceal ligation steps are shown in Figure 2.

Precautions

1. Care must be taken to deploy the tails of the deployed loops toward the stomach to avoid interference with the field of view for additional deployment of loops.

2. Care must be taken to avoid traction on the varix after ligation and before the release of the loop to avoid tearing of the varix.

Limitations

With the detachable snare already loaded in the endoscope, suctioning of blood becomes limited to clear the field view.

Clinical Applications (Table 1)

Management of Postpolypectomy Bleeding

The mechanism of action of endoloop is by occlusion of the arterial flow in the stalk of a polyp. Endoloop has been shown to be useful in the prevention of postpolypectomy bleeding, arrest of active bleeding following polypectomy, and induction of ischemic necrosis of polyps.

Attachable snare ligation is effective in the prevention of postpolypectomy bleeding. In a randomized controlled trial of 89 consecutive patients, Iishi and coworkers have demonstrated a significant reduction of immediate and delayed post polypectomy bleeding and duration of hospitalization in patients undergoing endoloop ligation of the polyp stalk before its resection.

Detachable snare ligation and epinephrine injection are equally effective in the prevention of postpolypectomy bleeding. In a randomized controlled trial of 488 consecutive patients with large pedunculated colorectal polyps (≥1 cm), post polypectomy bleeding was reported in 4.3% of the polypectomies: 1.8% (3 of 163 patients) in patients undergoing ligation before snare polypectomy, 3.1% (5 of 161 patients) in patients undergoing epinephrine injection before snare polypectomy, 7.9% (13 of 164 patients) undergoing snare polypectomy alone. In larger polyps (≥2 cm), postpolypectomy bleeding occurred in 6.7% (14 of 207 patients), 2.7% in the detachable snare group, 2.9% in the epinephrine injection group, and 15.1% in the control group.

Treatment of Esophageal Variceal Bleeding

Esophageal variceal band ligation using a multi-band ligator is widely used for endoscopic obliteration of varices. Recently, ligation of esophageal varices using mini-loops has been shown to be effective as well.

In a randomized controlled trial of 103 patients with recent or active esophageal variceal bleeding, hemostasis was achieved in 6 of 7 (86%) in the mini-detachable snare ligation group and 11 of 13 (85%) in multiple band ligation group with active bleeding; recurrent bleeding after initial treatment occurred in 2 of 46 (5.3%) in the mini-detachable snare ligation group and 3 of 57 (5.3%) in the multiple band ligation group. Esophageal varices were eradicated or reduced to grade I in 4.8 ± 2.1 and 4.5 ± 1.9 sessions in the mini-detachable snare ligation group and multiple band ligation group, respectively. Esophageal variceal recurrence rate was 5 of 46 (11%) and 6 of 57 (11%) in the mini-detachable snare ligation group and multiple band ligation group during a follow-up period of 6 and 16 months, respectively. Although no major complications occurred in either group, minor complications in the mini-detachable snare ligation group included dysphagia, incomplete detachable snare ligation, and variceal bleeding from snare trauma.

Naga and coworkers compared the use of mini-detachable snare ligation and multiple band ligation in 50 patients with acute esophageal variceal bleeding. There was no significant difference between the 2 groups in terms of frequency of variceal eradication, variceal recurrence, variceal rebleeding, and cost of care.

Although there are certain technical advantages for endoloop ligation, such as better field of vision, tighter application, good results with junctional varices, and a lack of strain exerted by the device on the endoscope, it is unlikely to replace endoscopic band ligation in the management of esophageal varices given the simplicity of operation of a band ligation, excellent safety, and efficacy data.

Treatment of Gastric Variceal Bleeding

Experience with endoscopic ligation of gastric varices with mini-detachable snares is limited. Yoshida and coworkers were the first to describe the use of detachable snares to treat gastric variceal bleeding.
varices. Endoscopic ligation of gastric varices is technically challenging, and the risk of ulceration, bleeding, and perforation raises concerns about its widespread acceptance as therapeutic modality in the management of gastric varices.

Novel Applications

Ligation Assisted Removal of Colonic Lipomas, Lymphangiomas, and Polypoid AVMs

Risk of perforation following snare resection of a large lipoma with a long pedicle could be avoided by endoloop ligation of the base of a lipoma before snare resection using pure coagulation current. Large broad-based colonic lymphangioma (3 cm) can be safely removed by snare resection after ligation of the base with an endoloop. Endoloop ligation of a large polypoid AVM (3.5 cm) of the colon is useful to cut-off the blood supply before biopsy to establish the diagnosis and plan subsequent therapy.

Endoscopic Extraction of Migrated Esophageal Covered SEMS

One or more endoloops can be applied to collapse the migrated self-expandable stent to permit easy removal of the stent.

Adjunct to Clip Hemostasis

Endoloop application has been shown to be successful in the management of bleeding that persists despite the application of clips to a Dieulafoy’s lesion and polypectomy site.

Closure of Gastrointestinal Fistula

A combination of a band ligator to create pseudopolyps at the margins of the fistula and endoloops to gather the pseudopolyps and hold them together, followed by application of clips and fibrin glue to close the gap, has been reported to be successful in the closure of chronic fistulae such as pseudocysto-colonic fistula and an esophago mediastinal fistula.

Peroral Endoscopic Falloplian Tube Ligation

Endoloops have been successfully used to ligate fallopian tubes in an animal experimental study of transgastric endoscopic surgical procedure.

Conclusions

Detachable snares or endoloops have recently been added to the armamentarium of endoscopic accessories used in endoscopic hemostasis. Clinical evidence supports the use of detachable snares or endoloops in the management of post polypectomy bleeding, bleeding esophageal and gastric varices, and angiodysplasias. In addition, several novel applications of detachable snares and endoloops have been reported in the literature. Large prospective and randomized controlled trials are needed to further define the role of detachable snares in the field of gastrointestinal endoscopy.

References