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Abstract
Bilirubin is an endogenous compound that can be toxic under certain conditions

but, on the other hand, mild unconjugated hyperbilirubinaemia might protect

against cardiovascular diseases and tumour development. Serum bilirubin levels

are often enhanced under a variety of clinical conditions. These are discussed and

the mechanisms are outlined.

Bilirubin is an endogenous compound that can be
toxic (1), especially in neonates. However, it has
recently been recognized that unconjugated bilirubin
(UCB) exerts a strong anti-oxidant activity, and that
mild hyperbilirubinaemia might have positive health
effects. Bilirubin is the ultimate breakdown product of
haemoglobin and serves as a diagnostic marker of liver
and blood disorders. It has a complex metabolism,
which is important in relation to several processes
involved in drug metabolism.

Bilirubin: chemical structure and formation

At first glance, bilirubin appears to be a simple
molecule. However, the UCB IXa 4Z,15Z molecule,
the major compound in mammals, has a peculiar
stereo-chemical structure (Fig. 1). Indeed, all hydro-
philic groups are involved in strong hydrogen bonds,
and this turns the molecule into a closed molecule
with a ridge-tile conformation (2, 3). These hydrogen
bonds render UCB hydrophobic and they also shield

the central –CH2–, which thus becomes inaccessible
for the diazo-reagent (see further). Depending on the
pH of the plasma, bile or urine, UCB can be present as
uncharged diacid, as a monoanion or as a dianion (3).
The uncharged diacid is by far the dominant species at
low and physiological pH (4 80%) but the ionized
fractions become more important in an alkaline mili-
eu, because the pK’a values have been determined to
be 8.12 and 8.44, respectively, for the first and for the
second anion (3).

Bilirubin is formed from haem by opening of
the haem ring at the a carbon bridge. This cleavage is
catalysed by the enzyme haem-oxygenase, and results
in liberation of iron, and in the formation
of carbonmonoxide and biliverdin IXa (Fig. 2).
The latter is reduced by a cytosolic enzyme biliverdin-
reductase to bilirubin IXa. The haem-oxygenase
can temporarily be inhibited by mesoporphyrins, and
this suppression results in a decreased UCB produc-
tion as was shown in neonates (4). Cleavage at non-a
sites is possible; it is probably non-enzymic and occurs
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only to a minor extent. This results in the formation of
other isomers; some can be detected in body fluids,
although always in small amounts or under special
conditions. The IXb isomer is present in neonatal
urine and in meconium (5), whereas the IXb and IXg
isomers have been detected in Gunn rat bile (6).
Because intramolecular hydrogen bonds cannot be
formed in these isomers, they are more hydrophilic,

and appear in urine or bile as an unconjugated
pigment. Till now, IXd has not been demonstrated in
mammals. Phototherapy, used in the treatment of
neonatal jaundice or in Crigler–Najjar disease, leads
to the formation of another group of more hydrophilic
derivatives of the natural UCB IXa, such as the 4E,15Z
and the 4Z,15E and 4E,15E photoisomers, which
can be excreted in bile without conjugation (3, 7–9)
(Fig. 3).

Bilirubin metabolism under normal conditions

Bilirubin derives from haem present in haemoglobin
and is released during breakdown of senescent ery-
throcytes, whereas approximately 20% of the daily
production is derived from haem proteins such as the
cytochrome P 450 isoenzymes, myoglobin, etc. It is
formed in the monocytic macrophages of the spleen
and bone marrow and in hepatic Kupffer cells, and is
released in plasma. Per 24 h 3.8 mg/kg or approxi-
mately 250–300 mg bilirubin is formed in a normal
adult (10). More is formed in the neonate.

Because UCB is extremely poorly soluble in water, it
is present in plasma strongly bound to albumin. The
dissociation constant for the first albumin-binding site
is Kd = 7� 107 M�1 (11). Recent studies by Ostrow
and collaborators, and reviewed in Ostrow et al. (3),
determined the aqueous solubility of UCB IXa
ZZ to be 70 nM in the non-ionized diacid form, which

Fig. 1. Chemical structure of the naturally occurring
unconjugated bilirubin IXa 4Z,15 Z.

Fig. 2. Formation of bilirubin.
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is by far the most prominent species present in
blood at physiological pH. The mono-anion is
present at approximately 17% and the dianion is
minimal (3).

Entry into the hepatocyte appears to be partly
passive (12, 13) and partly mediated by organic anion
transporter proteins (OATP 1B1 has the highest bind-
ing affinity) (13–15). The role played by OATPs has
not yet been clarified quantitatively (16). In the
hepatocytic cytosol, UCB is mostly bound to glu-
tathione-S-transferase A (ligandin), and a small part
is bound to the fatty acid-binding protein (3). As in
serum, this binding keeps the free fraction (which is
potentially toxic) low.

Bilirubin is conjugated in hepatocytic microsomes
in an ester linkage (17) with sugar moieties donated by
uridine diphosphate (UDP) sugars. The discovery of
glucuronide conjugation of bilirubin was one of the
milestones towards understanding bilirubin metabo-
lism and was made almost simultaneously by three
groups (18–20). The conjugation is catalysed by UDP-
glucuronyltransferase (UDP-GT), an enzyme encoded
for by the UGT1A1 gene (21). Both ligandin and UDP-
GT appear to be tightly regulated by the nuclear
constitutive androstane receptor (CAR) (22). In

humans, conjugation occurs mainly with glucuronic
acid, but glucose and xylose conjugates are also present
in normal bile. The latter are more abundant in cats,
dogs and rodents (23). One or two sugar moieties
are coupled to the –COOH of the propionic acid side
chain(s) of UCB in an ester linkage, resulting in
monoconjugated or diconjugated bilirubin respec-
tively. The esterification disrupts the intramolecular
hydrogen bonds, thereby opening the molecule
and rendering the conjugated bilirubins (CB) more
water-soluble or amphipathic, allowing excretion in
the bile. Conjugation also decreases the binding to
albumin or to intracellular proteins 5–10-fold, and
prevents intestinal re-absorption, because hydrophilic
agents do not easily pass the intestinal wall. In addi-
tion, the central –CH2– now becomes available for
direct attack by the diazo-reagent.

The bilirubin conjugates formed in the hepatocytes
are excreted in bile against a concentration gradient and
mediated by the canalicular membrane transporter
multidrug resistance-related protein 2 (MRP2) also
termed ABC-C2, belonging to the adenosine tripho-
sphate (ATP)-binding cassette family (24). The conju-
gates are incorporated into mixed micelles (with bile
acids, phospholipids and cholesterol) and pass with the

Fig. 3. Structure of isomers formed during phototherapy. From Fevery et al. (9) with permission.

Liver International (2008)
594 c� 2008 The Authors. Journal compilation c� 2008 Blackwell Munksgaard

Bilirubin in clinical practice Fevery



bile into the intestine, where reductive breakdown into
urobilinogens occurs by intestinal or bacterial enzymes.
A minor part undergoes deconjugation mainly by
bacterial enzymes, and the ensuing UCB can undergo
intestinal re-absorption, in contrast to CB.

Bilirubin determination

Bilirubin has a yellow colour with, for the unconju-
gated molecule, a typical spectrographical peak at
450 nm (25). Bilirubins are very sensitive to oxidation
and to light; therefore, serum samples should be
protected from direct light and be analysed as soon
as possible. For the study of biliary or urinary bile
pigments, more stringent precautions are necessary
because these fluids normally do not contain albumin
to protect the bilirubins. Handling should only be
carried out under subdued or red light and 1–5 mM
ascorbate has to be added as an anti-oxidant (26).

Unconjugated bilirubin can be extracted from ser-
um by chloroform in an acidic milieu and measured
spectrophotometrically but in general the diazo-reac-
tion is most often used. In the diazo-reaction, con-
jugated bilirubins are split to form dipyrrolic
azopigments (so-called direct Hymans–Van den Berg
reaction). In case of UCB, an accelerator substance
such as urea, ethanol, dimethyl sulphoxide, etc. is
needed to first disrupt the hydrogen bonds, rendering
the central –CH2– available for coupling with the
diazo-reagent in the so-called ‘indirect reaction’. The
azo-pigments formed have a typical purple colour
with a spectrographical peak at 540 nm (26). The
diazo-reaction is not entirely specific for differential
quantification of unconjugated and conjugated bilir-

ubin, because UCB also shows some reaction (ap-
proximately 2.8%) without an accelerator and because
the conjugated bilirubins have not yet reacted totally
(approximately only 93%) within 10 min (Fig. 4), but
the method using a total and a 10-min direct reaction
is the best available approach (28–30). The most
accurate and sensitive method to discriminate uncon-
jugated from conjugated bilirubin is based on the
formation of methyl derivatives in an alkaline milieu
(31), because such alkaline methanolysis is not possi-
ble with UCB. The derivatives can be separated
by thin-layer or more conveniently by high-pressure
liquid chromatography (32).

Disturbed bilirubin metabolism (Table 1)

In clinical laboratories, serum total (TB) and direct-
reacting (DB) bilirubin levels are usually determined.
Disorders have accordingly been classified as unconju-
gated hyperbilirubinaemia when the ratio DB/TB is
below 20–30%, whereas conjugated hyperbilirubinae-
mia is characterized by a ratio DB/TB4 70% and the
mixed type with values in between (29).

Enhanced bilirubin production

The formation of bilirubin can be enhanced due to an
abnormally high peripheral breakdown of haemoglobin,
termed haemolysis (Table 2), or due to dyserythopoiesis
(33). Dyserythopoiesis or inefficient erythropoiesis is a
rather rare cause of enhanced bilirubin production,
caused by an arrest in one of the phases of the mitosis,
resulting in immature erythroid cells being present in
the bone marrow and in the circulation. These imma-
ture or abnormal cells undergo rapid destruction, which
leads to UCB formation. Several mutations have been
detected recently. Dyserythropoiesis is also present in
thalassaemia and in some acquired disorders such as
Vit B 12 or folate deficiency, myelodysplasia, aplastic
anaemia, etc.

Haemolysis (34) is a far more frequent cause of
unconjugated hyperbilirubinaemia. Because erythro-
cyte synthesis in the bone marrow can be activated
6–8-fold, anaemia is often not present when red blood
cells undergo accelerated destruction, and yet uncon-
jugated hyperbilirubinaemia can be evident in chronic
haemolysis. A large spectrum of disorders can give rise
to haemolysis (Table 2). This becomes apparent from
an enhanced reticulocute count, increased plasma
UCB, lactate dehydrogenase (LDH), iron, decreased
free haptoglobin and possible alterations in red cell
morphology as seen in blood smears. On clinical
examination, splenomegaly may be present, and the
chronic hyperbilirubinaemia may induce pigment gall

Fig. 4. Direct and total diazoreaction of bilirubindiglucuronide
(triangles) and UCB (dots) added to human serum albumin with
p-diazobenzenesulphonic acid at pH 2.6 and a nitrite concentration
of 0.5%; means of three determinations are given (27).
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stone formation. The level of unconjugated hyperbilir-
ubinaemia in haemolytic diseases, such as the more
common spherocytosis and thalassaemia, also depends
on the quite frequent association with Gilbert’s syn-
drome (GS) (35, 36).

Disturbed conjugation

Bilirubin can only be eliminated efficiently out of
the body following conjugation. Decreased conjuga-
tion rates will thus lead to unconjugated hyperbilir-
ubinaemia.

The enzyme responsible for the conjugation, bilir-
ubin UDP-GT, is immature at birth. This results in
the so-called ‘physiological jaundice of neonates’, with
peak bilirubin levels at day 3–4. Formation of UDP-GT
is encoded by the UTG1A gene on chromosome 2. In
the 51#8242 region of the UGT1A gene, a large set
of unique first exons with individual proximal
promoter elements are arranged in a tandem array
upstream of four common exons. Each first exon

encodes a different substrate-specific N-terminal part
of the protein and is spliced to the four common exons
that encode the C-terminal part of the protein that
binds the common substrate, UDP-glucuronic acid. In
this way, a large set of isoforms are created, of which
the UDGT1A1 is the bilirubin-conjugating isoform
(21). Mutations in exons lead to Crigler–Najjar disease
(37–41) and in Japanese individuals seemingly also to
GS (41). A mutation upstream giving rise to an
enlarged 50 promoter TATA box, i.e. A (TA)7 instead
of the normal A(TA)6, leads to decreased transcrip-
tion; the reduced amount of enzyme formed is
responsible for GS in Caucasian, black and South-
Asian individuals (42). In GS, GT activity is approxi-
mately 30% of normal values, resulting in serum UCB
levels of 1–3 mg/dl (37–121 mM). In addition to ex-
ternal factors, serum bilirubin levels in GS will also
depend on whether the person is homozygous or
heterozygous for the A(TA)7 variant (43–45).

The Crigler–Najjar type 1 disease is characterized by
complete absence of enzyme activity with ensuing very

Table 1. Hyperbilirubinaemia

Normal metabolism Disorders Hyperbilirubinaemia

1. Production (250–300 mg/day) from
�Erythrocyte haemoglobin degradation
�Breakdown of myoglobin, cytochromes
�Haem synthesis in the bone marrow

Haemolysis
Dyserythropoiesis

Unconjugated

2. Transport in plasma bound to albumin Competitive binding by salicylates, some fatty acids,
Long acting sulphonamides

3. Uptake in hepatocytes
Membrane transit (via OATP?)
Binding to ligandins and FABP

Inhibition by indinavir, cyclosporin A, rifamycin, etc.
Neonatal immaturity of ligandin
Mutant Southdown sheep
Rotor syndrome??

4. Conjugation in microsomes Neonatal immaturity
Crigler–Najjar diseases
Gilbert syndrome
Inhibition by novobiocin, atazanavir, amitriptyline,

ketoconazole, etc.
Escape form conjugation due to

shunting (cirrhosis, TIPS)
5. Biliary secretion
�Bile canaliculus
�Bile ducts

Neonatal immaturity
Defect in MRP2: Dubin–Johnson syndrome
MDR3/PFIC3: cholestasis of pregnancy
Mutant Corriedale sheep
Mutant TR� rat (Groningen, Japan)
Hepatitis, cirrhosis
PBC, PSC, mechanical obstruction

Conjugated

6. Intestinal fate
�Enzymic deconjugation
�Bacterial reduction to urobilinogens
�Faecal elimination

Neonatal absence of bacteria

FABP, fatty acid-binding protein; MDR3, multidrug resistance 3; MRP2, multidrug resistance-related protein 2; OATP, organic anion transporter proteins;

PBC, primary biliary cirrhosis; PFIC3, progressive familial intrahepatic cholestasis type 3; PSC, primary sclerosing cholangitis; TIPS, transjugular

intrahepatic portosystemic shunt.
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high UCB levels in blood. This may lead to mental
disturbances, called Kernicterus, because of deposition
of UCB in brain tissue. Phototherapy can transform
the UCB IXa 4Z,15Z into water-soluble photoisomers
(Fig. 3), which can be excreted in bile and urine (1, 3,
7, 8, 46–48), and this therapy can maintain the
UCB IXa 4Z,15Z at acceptable levels to protect Crigler
–Najjar children till liver transplantation can be
performed (49). In Crigler–Najjar type 2 disease, other
mutations lead to the formation of an enzyme with
markedly decreased conjugating activity (39, 40).
In the latter syndrome, enzyme inducers such as
phenobarbital can enhance the GT activity, allowing to
maintain serum UCB levels around 10 mg/dl without
side effects. The enzyme is also absent in the Gunn rat, a
mutant strain of the Wistar R/A rat, which represents
an animal model for Crigler–Najjar type 1 disease
(50, 51).

The activity of the conjugating enzyme is also
influenced by a variety of post-translational condi-
tions, such as:
1. Age: The enzyme activity slowly increases after birth
(52).

2. Gender: In serum of normal individuals, UCB is
lower in females in the reproductive age than in males
(52–56). This difference might be due to the effects of
oestro-progestogens and of testosterone on the con-
jugation rate, because testosterone down-regulates
UDP-GT, whereas the combination of oestro-proges-
togens enhances enzyme activity (52). The effect of
testosterone might, however, explain the fact that GS is
often detected in males around puberty, but there is no
real gender preference for GS if one compares the
enhanced UCB levels with the normal values taking
age and gender into account.
3. Microsomal enzyme-inducing agents, such as pheno-
barbital, spironolactone, gluthetimide, rifampicin, etc.:
They will enhance enzyme activity and will decrease
serum bilirubin levels in Crigler–Najjar type 2 and in
GS (53). Inhibiting agents are the antiretroviral pro-
tease inhibitor atazanavir, amitriptyline, ketoconazole,
etc. (54).
4. Thyroid hormones: UDP-GT is decreased in rats
with hyperthyroidism and increased in hypothy-
roid animals (55).

The conjugation rate is rate limiting for the overall
bilirubin elimination out of the body in normal
situations, because bilirubin can only be disposed off
efficiently following conjugation. As such, the max-
imal biliary secretion rate, a measure of the hepatic
elimination, was shown to depend on the conjugation
rate, as documented under different experimental
conditions (56). When the bilirubin production rate
is enhanced as is the case in haemolysis, the relation-
ship between conjugation and elimination rate, and
consequently the serum UCB levels, remains identical
but is situated at a higher level (57).

Decreased biliary secretion

Bile results from (i) a hepatocytic bile acid-indepen-
dent secretion, with glutathione and Na1 excretion,
(ii) a hepatocytic bile acid-dependent secretion,
whereby the osmotic flow is generated by bile acid
formation and secretion, and (iii) a bile ductular
secretion mainly consisting of Na1 and HCO3

�, stimu-
lated by secretin and cholecystokinin, with involve-
ment of the chloride channel CFTR gene (‘cystic
fibrosis’). Most of the solutes will be delivered in bile
via mediation of special protein transporters or ‘ex-
port pumps’. At the sinusoidal pole of the hepatocyte,
unconjugated bile salts and part of UCB are taken up
from plasma via the ‘organic anion transporter pro-
teins’ (OATPs), and unconjugated and conjugated bile
salts by the ‘Na1-dependent taurocholate cotranspor-
ter’, whereas the transmembraneous potential

Table 2. Causes of haemolysis

1. Hereditary diseases
1. Inherited haemolytic disorders

(a) Membrane defects: spherocytosis, elliptocytosis
(b) Stomatocytosis
(c) Acanthocytosis
(d) Echinocytes
(c) Target cells: congenital LCAT deficiency

2. Hereditary enzyme deficiency
(a) Glucose and phosphate deficiency, GSH synthase

deficiency, etc.
(b) Disorders of glycolysis: pyruvate kinase deficiency, etc.
(c) Disorders of erythrocyte nucleotide metabolism

3. Congenital haemoglobinopathies: sickle cell disease,
thalassaemia syndromes, etc.

2. Acquired disorders
(a) Immunohaemolysis: transfusion reaction, autoimmune

haemolysis, drugs behaving as haptens, etc.
(b) Trauma and microangiopathy: prosthetic heart valves,

haemolytic uremic syndrome, DIC, TTP, long-distance
runners, etc.

(c) Infections such as malaria, clostridia, bartonella, etc.
(d) Chemical and toxic agents: snake venoms, copper, lead,

dapsone, nitrites, aniline dyes, etc.
(e) Membrane defects: paroxysmal nightly haemoglobinuria

(PNH), spur cells, etc.
(f) Hypophosphataemia

DIC, disseminated intravascular coagulation; GSH, glutathione; LCAT,

lysolecithin cholesterol acyl transferase; TTP, thrombotic thrombocyto-

paenic purpura.
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difference and the sodium gradient is sustained by a
Na1K1 ATPase. At the canalicular site, several export
pumps are active, and the biliary canaliculus behaves
as an active contractile pump (58, 59) because of the
action of microfilaments (which can be inhibited by
administration of phalloidin or cytochalasin B) and of
microtubules (inhibitable by e.g. colchicine, vinblas-
tin, etc.). Inhibition of the contractile elements by
these drugs leads to cholestasis (60).

A timely overview of the transport proteins [ATP-
binding cassettes (ABC)] involved is given by Pauli-
Magnus et al. (61, 62) and by Geier et al. (63). The
most important transport proteins are given in Table
3. Cholestasis or bilirubinostasis can thus be because
of either a congenital deficiency or absence of a given
transporter or acquired suppression by toxins or
diseases of the transporters (61–63) and/or of contrac-
tile elements (60) or because of decreased energy
supply. Alterations at the cholangiocyte level can also
produce cholestasis. Genetic disorders of cholangio-
cytes include cystic fibrosis and the Alagille syndrome;
acquired disorders include primary biliary cirrhosis,
primary sclerosing cholangitis, vanishing bile duct
diseases, etc. (63).

During chronic cholestasis, the presence of bilipro-
teins in plasma has been demonstrated. Acute biliary
obstruction is characterized by a rapid short-lasting
increase of alanine aminotransferase (ALT) (which is
often missed because the patient presents later in
time). This temporary increase in ALT is followed by
an increase of serum-conjugated bilirubin and some
days later by enhanced serum alkaline phosphatase
(ALP) levels, because elevation of the latter enzymes
requires new production by the cholestatic liver (64).
Following relief of a mechanical biliary obstruction by
endoscopy or by surgery, a rapid disappearance of
itching and of the serum bile acids is noted but the

jaundice disappears only slowly. It was also noticed
that the urine had become clear already despite the fact
that the jaundice still persisted. Investigations have
shown that these discrepancies are due to the presence
of ‘biliproteins’ or ‘covalently albumin-bound biliru-
bin conjugates’ in blood. These pigments consist of
bilirubin conjugates in which one glucuronide side
chain was replaced chemically by an albumin molecule
(65, 66). This non-enzymic exchange between the
glucuronide moiety and albumin occurs during stag-
nation of the bile. It can be compared with the
chemical formation of glycosylated haemoglobin
(HbA1C) in diabetes, whereby a glucose moiety be-
comes bound to haemoglobin. These albumin con-
jugates are diazo-positive, have a large molecular
weight (because of the albumin attachment) and
therefore cannot undergo ultrafiltration in the
kidney. They thus do not appear in the urine. These
biliproteins are catabolized in plasma when their
albumin part undergoes proteolysis. They thus have a
plasma half-life of 17 days, similar to that of natural
albumin (66).

In contrast, the normal bilirubin conjugates are
water soluble and appear in the urine. They mainly
undergo glomerular filtration, but tubular re-absorp-
tion and secretion also occurs (67–69). However,
because they are also bound to albumin (although far
less strong than UCB), the ultrafiltrable fraction is only
0.5%. The renal bilirubin clearance is thus only
approximately 0.5 ml/min or 0.5–1% of the normal
glomerular filtration rate (68). This explains the
low efficacy of haemo-dialysis in eliminating bilirubin
conjugates. It can also be calculated that a serum total
bilirubin concentration above 40 mg/dl points to the
presence of either renal insufficiency (leading to
decreased urinary output) or of bilirubin overproduc-
tion (haemolysis) in addition to the cholestasis (70).

Table 3. Most important transport proteins (61–63)

1. At the sinusoidal membrane
�Organic anion transporter proteins (OATPs especially OATP1B1)
�Na-taurocholate cotransporter protein (NTCP). This transporter is e.g. decreased by endotoxins and cytokines, which results in
sepsis-induced cholestasis

2. At the canalicular membrane: export pumps
Genetic mutations of some of these pumps give rise to the progressive familial intrahepatic cholestasis (PFIC) syndromes
�BSEP or bile salt export pump or ABC B11, inhibited by cyclosporine, rifampycine, etc. and being defective in PFIC type 2 and in
some patients with cholestasis of pregnancy
�MDR 1 (multidrug resistance protein 1): utilized by organic compounds such as xenobiotics, cytotoxines, etc.
�MRP 2 (multidrug resistance-assoc protein 2): mediating the secretion of bilirubin and bile salt glucuronides, defective in
Dubin–Johnson syndrome
�MDR 3 (multi drug resistance protein 3): a phosphatidylcholine flippase, defective in PFIC 3 and in several patients with cholestasis
of pregnancy
�ABC G5/G8: a cholesterol flippase, mutated in PFIC 1
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Conjugated bilirubins are the dominant bile pig-
ments in the urine of jaundiced patients, but very
small amounts of UCB IXa may be present, probably
resulting from tubular secretion (69). However, it
should be noticed that the ratio UCB:albumin in these
experiments was extraordinarily high (20:1). Further-
more, some deconjugation of CB is difficult to ex-
clude. Bilirubin UDP-GT was demonstrated in rat and
dog kidney (but not yet in the human kidney) (24)
and in rat intestine (71), and transplantation of a
Wistar rat kidney or intestine into a Gunn rat led to a
significant reduction of plasma UCB levels (71, 72).

Intestinal breakdown of conjugated bilirubins

Bilirubin conjugates reach the intestinal lumen via the
bile. In the intestine, deconjugation can take place. It is
mainly carried out by intestinal enzymes. Further
reductive alterations leads to the formation of several
urobilinogen species (73). These reductions are mainly
catalysed by bacterial enzymes and to a minimal part
by intestinal enzymes. When deconjugation prevails,
sizeable amounts of UCB are formed, and this pigment
can undergo intestinal re-absorption (‘enterohepatic
recirculation’). Such an absorption can lead to en-
hanced serum UCB levels. In neonates, the bacterial
flora is not yet developed, and reductive formation of
urobilinogens will be negligible. Deconjugation will
thus prevail and this adds to the enhanced serum
bilirubin levels observed in neonatal jaundice (74).

Bile salts incorporate bilirubins in micelles and
protect them from deconjugation. Normally, 95% of
bile salts are re-absorbed in the terminal ileum, but not
so in ileal disorders such as Crohn’s disease or in
patients with right-sided ileo-colectomy. In these
patients, part of the bile salts escape re-absorption
and appear in the colonic lumen. They keep UCB in
solution, protected from bacterial reductive altera-
tions, and this promotes UCB absorption and enter-
ohepatic recirculation. The re-absorbed UCB
augments the bilirubin content in serum, and follow-
ing hepatic uptake and conjugation, also that of gall
bladder bile. Because of the disease of the terminal
ileum, subnormal amounts of bile salts are re-ab-
sorbed and secreted in bile after enterohepatic recircu-
lation. The lower biliary bile salt content of the
gallbladder decreases the solubility of the higher
bilirubin content, and this can result in the formation
of bilirubin gall stones (75).

How to differentiate hyperbilirubinaemia

In serum of normal individuals, the concentration of
UCB is lower in females than that in males (52, 76–79),

and averaged 0.52� 0.003 mg/dl in women and
0.72� 0.004 mg/dl in men in a USA population study
of 176 million individuals (79). Normal serum con-
tains 96.4� 2.0% UCB, 1.8� 2.0% monoglucuronide
and 1.9� 2.0% diglucuronide (78). The concentration
of UCB is enhanced in haemolysis, but the relative
proportions of UCB and CB remain identical to values
of normal individuals (80) whereas in GS both the
concentration and the percentage of UCB is enhanced,
the latter attains 99% and the monoglucuronide is
increased to 67% of the conjugated bilirubins (48). In
normal human bile, UCB is 1.5� 1.3% of the total
pigment, with 16.1� 3.8% monoconjugates and
80.8� 3.9% diconjugates. In GS, UCB and monocon-
jugates are enhanced till 3.2� 2.4 and 33.5� 7.2%,
respectively, whereas in haemolysis the percentages
of the various pigments remain similar to those of
normal individuals (81).

In the clinical context, the diazo-reaction is most
often used and the determination of TB and DB will
allow defining the hyperbilirubinaemia as:

1. Unconjugated hyperbilirubinaemia: DB/
TBo 20–30%. In this condition, one has to consider:
� Haemolysis: Characterized by a high reticulocyte
count, low free haptoglobin, high serum iron and
LDH. Erythrocyte abnormalities may be recognized
in blood smears. Splenomegaly is often detectable.
� Dyserythropoiesis (acquired or more rarely congeni-
tal): A relatively low reticulocyte count, low free
haptoglobin, low serum cholesterol (because it is
utilized in the accelerated synthesis of red blood cell
precursors), high serum iron and LDH (from the
destruction of abnormal red cells) are present.
� Gilbert’s syndrome (or very rarely Crigler–Najjar type
2 disease): Increased UCB, but all other tests are
normal. This can be documented by the demonstra-
tion of a mutated UGT1A1 gene (enhanced TATA box
6/7 or 7/7 instead of 6/6 in Caucasians, or mutated
exons).

Table 4. Postoperative jaundice

1. Exacerbation of pre-existing liver disease
2. Toxic hepatitis or cholestasis due to anesthetic and other

drugs used
3. Partial biliary obstruction
4. Post-transfusion hepatitis: before 1990, this was very

frequent and mostly due to HCV infection from transfused
blood

5. Ischaemic liver injury
6. Small for size liver syndrome
7. Benign postoperative jaundice

HCV, hepatitis C virus.
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2. Conjugated hyperbilirubinaemia: DB/TB4 70%.
This is because of cholestasis or the rare Dubin
Johnson or Rotor syndrome.

3. Mixed hyperbilirubinaemia: DB/TB = 30–60%.
This condition is characterized by an increase

in serum unconjugated and conjugated bilirubins.
It can be seen in combined disorders leading to
both enhanced production and decreased secretion
rates, but also when UCB escapes the hepatic conjuga-
tion because of bypassing of the hepatocytes.
Such shunting occurs when large intrahepatic or
extrahepatic shunts (varices, splenorenal, etc.) are
present either spontaneously in some patients with
cirrhosis, or following placement of a transjugular
intrahepatic portosystemic shunt or a surgical shunt.
Shunting results in unconjugated or in mixed hyper-
bilirubinaemia, because most of the UCB is formed
outside the liver and part of it will not reach the
conjugating hepatocytes. The shunting will also lead to
enhanced serum bile acids and ammonia, because
these compounds will also escape hepatocytic meta-
bolization.

Another example of combined disorders is present
in the ‘overloading syndrome’ occurring sometimes in
the postoperative situation. In general, ‘postoperative
jaundice’ (82) can be due to several causes as given in
Table 4. It is seen in the small for size liver syndrome
following a partial liver resection, whereby the remain-
ing liver might be too small to deal with a normal
bilirubin production rate. This will lead to a tempor-
ary jaundice until the remaining liver regains compen-
satory hypertrophy. The jaundice is usually combined
with shortage of clotting factors and with an elevated
blood ammonia level. In older patients, it may take
several weeks before the liver assumes its normal size.
‘Benign postoperative jaundice’ is another syndrome
with mixed hyperbilirubinaemia. The jaundice is seen
within 2–4 days after the operation. It occurs mostly in
older, hypoxic, hypotensive or critically ill patients,
who have undergone prolonged operations and have
received blood transfusions. Transaminases remain
below 100 IU/L, ALP is normal or only slightly in-
creased and a mixed hyperbilirubinaemia is present
(with CB being more increased than UCB). The
jaundice is due to a combination of (i) bilirubin
overproduction (because 10% of packed red cells
haemolyse within 24 h and 0.5 L of transfused packed
cells will thus result in an extra production of 250 mg
bilirubin, doubling the normal daily production rate),
(ii) decreased biliary secretion, because of inflamma-
tory cytokines (which suppress the Na taurocholate
cotransporter uptake protein), drugs, hypoxia and
cardiac decompensation and (iii) renal dysfunction,

which is often associated and will result in decreased
renal elimination of bilirubin conjugates.

Mixed hyperbilirubinaemia can also be seen in
alcoholic patients, when a decreased biliary secretion
(because of the liver disease) is combined with over-
production of bilirubin due to haemolysis. Such a
haemolysis can result from a decreased gluthathione
content of the erythrocytes or from a decreased red cell
membrane fluidity owing to high triglycerides (Zieve
syndrome) or to the presence of echinocytes (a sub-
type of ‘spur cells’) (83). The latter have a high free
cholesterol to phospholipid ratio in their membrane
(normal red cells o 1.0, normal platelets o 0.4). This
high free cholesterol results from the inability to
esterify cholesterol because of a markedly decreased
lysolecithin cholesterol acyl transferase (LCAT). This
enzyme is formed in the liver, and can be markedly
decreased in end-stage cirrhosis (81). An example is
given by the following patient presenting with a TB of
6.6 mg/dl (or 112 mM), a DB of 2.1 mg/dl (or 35mM), a
low haemoglobin (9.6 g/dl), a high mean corpuscular
volume and a very low haptoglobin (o 0.20 g/L), with
12% echinocytes in a peripheral blood smear, an active
blood-forming bone marrow and a low serum choles-
terol: 104 mg/dl (4 160), but a high free cholesterol
(e.g. 57%), as a result of the low LCAT.

Additional aspects of disturbed bilirubin
metabolism

Thyroid disorders and cardiac decompensation

Mild changes in serum aminotransferase levels and in
bilirubin concentrations are frequent in thyroid dis-
eases, but they often pass unnoticed. On rare occa-
sions, clinical jaundice may be present with serum
bilirubin levels as high as 19 mg/dl (84). Both mild
unconjugated hyperbilirubinaemia as well as cholesta-
sis and conjugated hyperbilirubinaemia can be seen.

In cardiac decompensation, mild unconjugated hy-
perbilirubinaemia may result from diminished uptake
by the hepatocyte because of reduced flow, whereas a
mild increase in conjugates can be present because of
anoxic suppression of the biliary secretory mechan-
isms (85, 86).

Neonatal hyperbilirubinaemia

The so-called ‘physiological jaundice of the neonate’ is
a complex phenomenon and results from a combina-
tion of the following:
� the larger haemoglobin mass of the neonate com-
pared with the adult, leading to an increased bilirubin
production;
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� a lower plasma albumin level, which may decrease
transport to the liver;
� a lower conjugation rate because of a low UDP-
glucuronide content and immaturity of the conjugat-
ing enzyme UDP-GT;
� an immature biliary secretory apparatus; and
� the absence of bacterial flora resulting in a decreased
reductive bilirubin breakdown, and in enhanced de-
conjugation of bilirubin di- or monoglucuronide to
UCB with enhanced enterohepatic circulation.

Neonatal hyperbilirubinaemia can be a very serious
condition, because UCB can become potentially toxic,
especially in neonates, when the free or unbound UCB
is enhanced. Especially, brain tissue is sensitive to the
toxic effects of UCB, and this can lead to kernicterus
with impairment of auditory, motor or mental func-
tioning. Bilirubin-induced neurotoxicity has been en-
countered when serum UCB levels are above 20 mg/dl
(340 mM), but it can occur at lower levels. As men-
tioned above, UCB is extensively bound to albumin
and this binding keeps UCB in the plasma. However,
when the molar ratios of UCB to albumin increase, the
non-albumin bound or free UCB increases and this
compound enters the cells and exerts toxicity. Its
concentration can increase with high serum UCB
levels, but also when the albumin concentration is
low or when other compounds displace UCB from its
binding to albumin. Such a displacement has been
documented by sulphonamides, contrast media, anti-
inflammatory drugs, etc. (47, 87). The free UCB
concentration is very difficult to measure exactly, but
the modified peroxidase method appears to be a
clinically reliable method (1, 3, 47, 88). Neurotoxicity
might also occur when UCB is not efficiently
cleared by brain tissue itself because of low expression
or activity of export carrier proteins, such as
MRP1 and possibly multidrug resistance protein 1 or
OATPs (47).

Gilbert’s syndrome

Approximately 6–10% of the population has enhanced
serum UCB levels (77), when the gender difference is
taken into account. Serum and biliary UCB, and the
bilirubin mono- to diglucuronide ratio are increased
in GS because of a decreased bilirubin UDP-GT
activity, which is approximately 30% of the normal
enzyme activity. The lower amount of enzyme is the
result of mutations of the UGT1A1 gene. In Cauca-
sians, black and South-Asian populations, a longer
A(TA)7 box is found in the promoter region instead of
the normal A(TA)6, this mutated gene is termed
UGT1A1�28 and is evenly present in male as in female

individuals (40). In Japan, GS seems to be character-
ized by a mutation in the coding region (41). Recent
studies documented that this mutated UGT1A1�28 is
frequently associated with mutations in UGT1A6 (89)
and in other UGTs (UGT1A3 and UGT1A7 poly-
morphism), leading to a haplotype of four genetic
variants (54). UGT1A6 is involved in the glucuronida-
tion of 4-nitrophenol, 4-methylumbelliferone, etc. and
UGT1A7 in the glucuronidation of irinotecan and of
atazanavir. It is not yet clear whether such combined
polymorphisms of UGTs in GS might exert a negative
effect on the metabolization of other drugs or envir-
onmental toxic substances. In addition to decreased
UDP-GT, several individuals with GS have a reduced
hepatic uptake of UCB and ICG (44, 90). It is not yet
clear whether this is due to a lower expression of
OATPs. Serum bilirubin levels in GS will thus depend
on the presence of a homozygous or a heterozygous
mutation of the UGT1A1, of an additional reduced
hepatic uptake, on hormonal influences (e.g. sex and
thyroid hormones), on inhibiting or enzyme-stimulat-
ing medication, on fasting and on possibly associated
haemolysis (35, 36).

The higher serum UCB levels appear to be advanta-
geous because UCB is a strong anti-oxidant and
inhibits lipid peroxidation (91). Population studies
documented a reduced incidence of cardiovascular
problems (92, 93), of carcinoma in general (94) and
of colorectal carcinoma specifically (79) in individuals
with higher serum UCB.

A disadvantage of the mutated UGT1A1 has been
documented recently, because both irinotecan and
indinavir are glucuronidated by the same GT as
bilirubin. Irinotecan (Camptos, Pfizer Co) is a camp-
tothecin analogue, a prodrug and requires bioactiva-
tion to the active 7-ethyl-10-hydroxycamptothecin
(SN-38), which is a strong DNA topo-isomerase-1
inhibitor. SN-38 is detoxified to SN-38-glucuronide
by UDP-GT (UGT1A1 genotype). Patients with GS
will glucuronidate SN-38 more slowly and as such will
have higher blood levels of the active SN-38. This
results in more severe neutropaenia and diarrhoea
following intake of irinotecan, in parallel with their
bilirubin levels (95–98). Indinavir used in the therapy
against the human immunodeficiency virus is detox-
ified more slowly in GS patients, and this can lead to
haemolytic jaundice. Indinavir also inhibits the uptake
transporter OATP 1B1 and this might additionally
enhance the unconjugated hyperbilirubinaemia (15).
Atazanavir, another antiretroviral protease inhibitor, is
an inhibitor of bilirubin UDP-GT and is itself metabo-
lized by the GT encoded by UGT1A7, which is often
mutated in association with UGT1A1 (54). As a result
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of both mutations being present in GS, atazanavir is
more slowly catabolized and thus exerts an inhibition
of bilirubin UDP-GT. This dual mechanism will lead
to a marked hyperbilirubinaemia (54).

Gilbert’s syndrome is characterized by an enhanced
fasting hyperbilirubinaemia (99). Fasting for 24–48 h
enhances serum bilirubin levels also in normal in-
dividuals because fasting results in an augmented
haem-oxygenase activity, which leads to an increased
production of bilirubin (100, 101). The absence of
enteral feeding leads to a decreased intestinal motility
and this may result in enhanced deconjugation by the
bacterial flora with a greater intestinal re-absorption of
UCB, adding to the serum UCB level (102, 103). In the
case of GS, the lower UDP-GT will augment this UCB
because of the decreased hepatic conjugation. Fasting
hyperbilirubinaemia is normalized by enteral but not
by intravenous administration of calories (99). Simi-
larly, higher serum bilirubin levels have been observed
in patients with GS and long-term parenteral nutrition
(104) or associated achalasia (105) or in neonates with
hypertrophical pyloric stenosis (106). Higher UCB
levels in GS are also seen during fever (which induces
mild haemolysis) and in general when GS is combined
with a low-grade haemolysis. In one study, individuals
with GS and haemolysis had levels of 3.9� 1.1 vs
2.6� 0.9 mg/dl in haemolysis alone and 2.2 mg/dl in
GS alone (35).

Conclusion

Bilirubin is an interesting molecule, with special
physico-chemical properties. Its complex metabolism
is frequently disturbed. The conjugation is rate limit-
ing under normal conditions and determines serum
UCB and biliary excretion. Biliary secretion is the most
susceptible step and is most easily disturbed, leading to
conjugated hyperbilirubinaemia. The uptake mechan-
ism needs more investigation.
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