Nephropathy in Type 1 Diabetes: Can One Identity the Patients at Risk?

Pierre Lefèbvre
University of Liège, Belgium

Cuba, November 2007
Nephropathy in Type 1 Diabetes

- It has been known for years that the risk of nephropathy is not the same for all patients with Type 1 diabetes
- Are they favouring or protective factors?
- Our Group has addressed this question in three studies that will be briefly reviewed.
Nephropathy in Type 1 Diabetes

• Factors predictive of nephropathy in DCCT Type 1 diabetic patients with good or poor metabolic control (Zhang et al: Diabet. Med. 2003, 20: 580-585)

• Different patterns of insulin resistance in relatives of Type 1 diabetic patients with retinopathy or nephropathy (Hadjaj et al: Diabetes Care, 2004, 27: 2661-2668)*

*Collaboration with the Group of M. Marre in Paris
Factors predictive of nephropathy in DCCT Type 1 patients

Zhang, Krzentowski, Albert and Lefèbvre, Diabetic Medicine 2003
The DCCT Study

• Design in the full-scale clinical trial:

- Total 1441 type 1 diabetic patients (13-39 years)
 - Primary prevention cohort: 726 patients
 - Secondary intervention cohort: 715 patients

Randomization:
- Intensive: CSII (continuous subcutaneous insulin infusion) or multiple daily injections of insulin
- Conventional: up to 2 daily injections of insulin

Intensive: n = 348, Conventional: n = 378
Intensive: n = 363, Conventional: n = 352

Intensive: CSII (continuous subcutaneous insulin infusion) or multiple daily injections of insulin
Conventional: up to 2 daily injections of insulin.
Metabolic Control and Complications

- Diabetes Control and Complications Trial (DCCT, 1983-1989)

Microalbuminuria (solid lines) and albuminuria (dotted lines)
Aims of the Work

- Questions:

 Some patients
 \[
 \text{Under GMC} \xrightarrow{\text{develop}} \text{Nephropathy}
 \]
 \[
 \text{Under PMC} \xhookleftarrow{\text{free from}} \text{Nephropathy}
 \]

- Aims:

 To assess the risk of a given patient developing diabetic nephropathy despite good metabolic control (GMC) or the chance of escaping nephropathy despite poor metabolic control (PMC)
A great example of Democracy in Science

DCCT Database made available by the US National Technical Information Service of the Dpt. of Commerce
The DCCT Study

- Risk covariates at baseline:
 - Quantitative variables
 - Age at entry (year)
 - BMI (kg/m²)
 - Duration of diabetes (months)
 - HbA₁c at baseline (%)
 - AER (mg/24h)
 - Stimulated C-peptide (pmol/ml)
 - Mean blood glucose (mg/dl)
 - Arterial blood pressure (mmHg)
 - Categorical variables
 - Gender
 - Adulthood
 - Family history
 - Marital status
 - Smoking status
 - Time-related variables (HbA1c, AER, …….)
Definition of GMC or PMC

All DCCT patients irrespective of treatment

Good metabolic control
20% of DCCT patients

Poor metabolic control
20% of DCCT patients

HbA1c level: 6.9% 9.5%
Diabetic Nephropathy

- **Aims:** To assess the risk of developing nephropathy in patients maintained for several years under GMC or PMC.

- **Patients:** DCCT primary and secondary cohort under GMC or PMC but without nephropathy at baseline (n = 545).

- **Definition:** An observed urinary albumin excretion rate (AER) ≥ 40 mg/24h *(measured annually)*.
Diabetic Nephropathy

• The database

Good metabolic control (GMC) n = 277 in the study

12 (4.2%) excluded

Poor metabolic control (PMC) n = 268 in the study

18 (6.3%) excluded

n = 289

n = 286

n = 545
Diabetic Nephropathy

- The effect of MC confirmed by Kaplan-Meier curve:

After 9 years: 15% developed nephropathy in GMC
52% did not develop nephropathy in PMC
Diabetic Nephropathy

- Factors predictive of nephropathy in backward stepwise Cox PH regression when adjusted for MC:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coef (± SE)</th>
<th>P</th>
<th>Risk ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>−0.094 (± 0.016)</td>
<td>< 0.0001</td>
<td>0.91 (0.88-0.94)</td>
</tr>
<tr>
<td>AER (mg/24h)</td>
<td>0.54 (± 0.15)</td>
<td>0.0004</td>
<td>1.72 (1.27-2.31)</td>
</tr>
<tr>
<td>Duration of diabetes (months)</td>
<td>0.41 (± 0.12)</td>
<td>0.0011</td>
<td>1.50 (1.18-1.91)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>−0.10 (± 0.034)</td>
<td>0.0025</td>
<td>0.90 (0.84-0.96)</td>
</tr>
<tr>
<td>Gender (0 = male; 1 = female)</td>
<td>0.73 (± 0.35)</td>
<td>0.0389</td>
<td>2.07 (1.04-4.11)</td>
</tr>
<tr>
<td>Interaction effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age × MC</td>
<td>0.064 (± 0.013)</td>
<td>< 0.0001</td>
<td>1.07 (1.04-1.09)</td>
</tr>
<tr>
<td>Gender × MC</td>
<td>−1.05 (± 0.40)</td>
<td>0.0091</td>
<td>0.35 (0.16-0.77)</td>
</tr>
</tbody>
</table>

The interaction terms: the major role of MC
the differential effects of age and gender.
Diabetic Nephropathy

- A risk ratio $\lambda = \exp(R)$:

$$R = 0.54 \times \log(AER) + 0.405 \times \log(\text{Disease duration}) - 0.103 \times \text{BMI} - 0.0943 \times \text{Age} + 0.0635 \times \text{Age} \times \text{MC} + 0.725 \times \text{Gender} - 1.05 \times \text{Gender} \times \text{MC}$$

GMC (MC = 0)

$$R = 0.54 \times \log(AER) + 0.405 \times \log(\text{Disease duration}) - 0.103 \times \text{BMI} - 0.0943 \times \text{Age} + 0.725 \times \text{Gender}$$

Under GMC

The risk of developing nephropathy is higher in women (risk ratio = 2.1) and decreases with age (risk ratio = 0.91).

1 = female; 0 = male *
Diabetic Nephropathy

- A risk ratio $\lambda = \exp(R)$:

$$R = 0.54 \times \log(AER) + 0.405 \times \log(\text{Disease duration}) - 0.103 \times \text{BMI} - 0.0943 \times \text{Age} + 0.0635 \times \text{Age} \times \text{MC} + 0.725 \times \text{Gender} - 1.05 \times \text{Gender} \times \text{MC}$$

PMC (MC = 1)

$$R = 0.54 \times \log(AER) + 0.405 \times \log(\text{disease duration}) - 0.103 \times \text{BMI} - 0.0308 \times \text{Age} - 0.325 \times \text{Gender}$$

* 1 = female; 0 = male. Risk ratio: 0.97 for age and 0.72 for gender

Under PMC

Male patients are more at risk of developing nephropathy than female patients.
Diabetic Nephropathy

- Example:
 Man 1, 35 years old, disease duration: 60 months
 BMI: 23 kg/m², AER: 15 mg/24h.

GMC (MC = 0)

\[R = -2.55 \]
\[\lambda = \exp(R) = 0.08 \]

PMC (MC = 1)

\[R = -0.33 \]
\[\lambda = 0.72 \]
Conclusions (1)

- In patients with good metabolic control (HbA1c ≤ 6.5% for 9 years), diabetic nephropathy occurred in 15% of the patients.
- Despite poor metabolic control (HbA1c ≥ 9.5% for 9 years), diabetic nephropathy did not develop in 52% of the patients.
Conclusions (2)

- Regardless of metabolic control, the risk of diabetic nephropathy is increased with:
 - Higher AER (within the «normal range») at baseline
 - Longer duration of diabetes
 - Lower BMI
Conclusions (3)

• Under good metabolic control, the risk of diabetic nephropathy seems higher in women than in men and decreases with age
• Under poor metabolic control, the effect of age vanishes and the risk of diabetic nephropathy seems higher in men ...
Take-home message 1

- It is confirmed that Type 1 diabetic patients with good MC may develop diabetic nephropathy and that those with poor MC may escape the condition.
- Higher AER, within the «normal range» already indicate early DR.
- Risk of DN is higher at younger age and lower BMI.
- The effect of gender is ambiguous.
Different patterns of insulin resistance in relatives of Type 1 diabetic patients with retinopathy or nephropathy

Hadjaj, Péan, Gallois, Passa, Aubert, Weekers, Rigalleau, Bauduceau, Bekherraz, Roussel, Dussol, Rodier, Maréchaud, Lefèbvre, and Marre for the GENESIS France-Belgium Study

Diabetes Care 2004
Genesis Franc-Belgium Family Study

- 853 subjects recruited
- 578 relatives
- 275 probands: -130 with
 -145 without diabetic nephropathy
Nephropathy stages

• Absent: repeated microalbuminuria < 30mg/24 h
• Incipient: microalbuminuria 30-300mg/24h
• Established: AER > 300mg/24h with creatinine <150µmol/l
• Advanced: increased AER, Creatinine > 150µmol/l or renal replacement
« Insulin resistance score » in first degree relatives

- Composite score taking into consideration:
 - History of hypertension
 - Dyslipidemia
 - Type 2 diabetes
 - Body weight

*Diabetes Care, 2004
Results

• Nephropathy in the probands correlated with:
 - Insulin resistance score in first degree relatives \((p<0.04)\), particularly in mothers \((p=0.02)\)
 - Personal history of Type 2 diabetes \((p<0.0001)\), obesity \((p<0.0001)\) and lipid disorders \((p<0.007)\), but not hypertension, in first degree relatives
Clustering of risk factors in parents of patients with nephropathy and Type 1 diabetes

- Earl et al, 1992: CVD
- De Cosmo et al, 1997: risk factors for CVD
- Tarnow et al, 2000: CVD
- Verhage et al, 1999: Syndrome X
- Lindsey et al, 1999: stroke
- Fagerudd et al, 1999: Type 2 DM
- Thorn et al, 2007: Hypertension, CVD and Type 2 DM
Take-home message 2

The risk of diabetic nephropathy in patients with Type 1 diabetes seems to be increased if one or both parents have experienced:

- Cardiovascular disease
- Type 2 diabetes
- Metabolic Syndrome/Insulin resistance
- Hypertension (?)
Diabetic nephropathy development is conditioned by the Glu298Asp polymorphism of endothelial nitric oxide synthase gene (NOS3): Additive effect with angiotensin-converting enzyme gene (ACE) I/D polymorphism

Weekers, Hadjaj, Guilloteau, Gallois, Pean, Roussel, Antkoche, Tichet, Lefèbvre and Marre on behalf of GENEDIAB and DESIR Study Groups, 2007: submitted
A candidate gene study among many others

- Endothelial nitric oxide synthase (eNOS) is a key regulator of renal hemodynamics. Is there an association with DN and two polymorphisms of the eNOS gene (NOS3)?
- Angiotensin-converting enzyme (ACE) insertion/deletion polymorphism is a risk factor for DN, the ACEII genotype conferring the lowest risk.
- Is there a combined effect of these 2 polymorphisms?
Angiotensin-I converting enzyme insertion/deletion polymorphism and its association with diabetic nephropathy: a meta-analysis of studies reported between 1994 and 2004 and comprising 14,727 subjects

Review of the results of 47 studies in 14,727 subjects
Risk of DN is 22% lower in subjects with II Genotype than Carriers of the D-allele.
The association is more marked (-35%) in diabetic Asians (Chinese, Japanese, Koreans)
Prospective study

- 297 Type 1 diabetic patients followed at the Angers (France) diabetes clinic for 7 years
- Primary outcome: diabetic nephropathy (see Study 2)
Results

• eNOS: exon 7 polymorphism (Asp/Asp patients versus Glu allele carriers) was associated with a lower risk of DN progression: HR 0.32, 95% CI 0.11-0.96
• ACE: II genotype was also associated with a lower risk of DN progression: HR 0.27, 95% CI 0.08-0.86
• The lowest risk was associated with the combination of ACE II and NOS3 Asp/Asp genotypes
OP 11 Nephropathy: mechanisms

0061

EURAGEDIC study: identification of new candidate genes for diabetic nephropathy

1UMR S 525, INSERM, Paris, France, 2Umr s 525, Université Pierre et Marie Curie-Paris6, France, 3Steno Diabetes Centre, Copenhagen, Denmark, 4Department of Medicine, Helsinki University Central Hospital, Finland, 5Biomedicum, Folkhålsan Institute of Genetics, Helsinki, Finland, 6Diabetology department, Poitiers Hospital, France, 7Ern 324, INSERM, Poitiers, France, 8Department of Diabetology, Bichat Hospital, Paris, France, 9U695, INSERM, Paris, France, 10CNG, CNRG, Evry, France, 11MRC Mammalian Unit, Mammalian Research Council, Didcot, United Kingdom, 12Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom.

New candidates: PARP1 (glucose-induced apoptosis)
SLC12A3 and EDN1 (renal Na excretion and systemic blood pressure)
Original Article

Genome-Wide Scans for Diabetic Nephropathy and Albuminuria in Multiethnic Populations

The Family Investigation of Nephropathy and Diabetes (FIND)

Diabetes, 2007, 56: 1577-1585
Take-home message 3

• Potential candidate genes underlying susceptibility to, or protection from, diabetic nephropathy have been indentified

• Large genome scan investigations are in progress to map genes involved in multiethnic populations
Diabetic Nephropathy

• Conclusions:
 – Under GMC, nephropathy develop in patients with specific baseline pattern. By contrast, patients with PMC can remain free from the complication for a long time period.
 – Major role of MC on time to nephropathy
 – Baseline risk factors: AER, age, gender, BMI and duration of diabetes. Diabetic nephropathy may already be present at AER < 40mg/24 hours
 - The effect of age: younger patients are associated with nephropathy.
 – The effect of gender: under GMC, women tend to develop nephropathy more often but appear to be better protected under PMC.