Procalcitonin Helps Detect Bacterial Infections in Febrile Infants

Procalcitonin May Help Detect Serious Bacterial Infections in Febrile Infants CME

News Author: Laurie Barclay, MD
CME Author: Penny Murata, MD

Complete author affiliations and disclosures, and other CME information, are available at the end of this activity.

Release Date: October 6, 2008; Valid for credit through October 6, 2009

Credits Available

Physicians - maximum of 0.25 AMA PRA Category 1 Credit(s)™ for physicians;
Family Physicians - up to 0.25 AAFP Prescribed credit(s) for physicians

All other healthcare professionals completing continuing education credit for this activity will be issued a certificate of participation. Physicians should only claim credit commensurate with the extent of their participation in the activity.

To participate in this internet activity: (1) review the target audience, learning objectives, and author disclosures; (2) study the education content; (3) take the post-test and/or complete the evaluation; (4) view/print certificate View details.

Learning Objectives

Upon completion of this activity, participants will be able to:

1. Describe the test performance of procalcitonin for detecting serious bacterial infections in febrile infants up to 90 days of age without apparent bacterial source.
2. Report the optimal cutoff value of procalcitonin to identify febrile infants up to 90 days of age at low risk for serious bacterial infections.

Authors and Disclosures

Laurie Barclay, MD
Disclosure: Laurie Barclay, MD, has disclosed no relevant financial relationships.

Penny Murata, MD
Disclosure: Penny Murata, MD, has disclosed no relevant financial relationships.

Brande Nicole Martin
Disclosure: Brande Nicole Martin has disclosed no relevant financial information.

October 6, 2008 — Use of procalcitonin was effective in detecting serious bacterial infections (SBIs) in young febrile infants according to the results of a prospective, observational study reported in the October issue of Pediatrics.

"Procalcitonin has been shown to be an accurate discriminator between viral and bacterial infections for older children and adults," write Vincenzo Maniaci, MD, from Children's Hospital Boston and Harvard Medical School in Boston, Massachusetts, and colleagues, "This is the first prospective study to evaluate the performance of a high-sensitivity procalcitonin assay for febrile infants <3 months of age."

The study goals were to evaluate the test performance of procalcitonin for identifying SBIs in febrile infants not older than 90 days of age without an identifiable bacterial source and to determine the optimal cutoff value to identify infants at low risk for SBIs.
In 234 febrile infants not older than 90 days of age (median age, 51 days) who presented to an urban, pediatric emergency department, an automated high-sensitivity assay was used to measure serum procalcitonin levels. To optimize sensitivity and negative predictive value for the detection of SBIs, the investigators selected an optimal procalcitonin cutoff value. Infants were classified as having definite, possible, or no SBIs.

Of 30 infants (12.8%) with definite SBIs, 4 had bacteremia, 2 had bacteremia with urinary tract infections (UTIs), and 24 had UTIs. Of 12 infants (5.1%) with possible SBIs, 5 had pneumonia and 7 had UTIs.

Compared with mean procalcitonin levels in infants with no SBI (0.38 ± 1.0 ng/mL), mean procalcitonin levels for definite SBIs (2.21 ± 3.9 ng/mL) and definite plus possible SBIs (2.48 ± 4.6 ng/mL) were significantly higher.

For definite SBIs, the area under the receiver operating characteristic curve was 0.82 compared with 0.76 for definite and possible SBIs. A cutoff value of 0.12 ng/mL had a sensitivity of 95.2%, specificity of 25.5%, negative predictive value of 96.1%, and negative likelihood ratio of 0.19 for identifying definite and possible SBIs. This cutoff value accurately identified all cases of bacteremia.

"Procalcitonin has favorable test characteristics for detecting [SBIs] in young febrile infants," the study authors write. "Procalcitonin measurements performed especially well in detecting the most serious occult infections."

Limitations of this study include its small sample size, the small number of patients with SBIs, an inability to analyze subgroups, a lack of data on duration of fever, and a higher rate of definite SBIs compared with previous prevalence studies.

"The performance of procalcitonin as a single clinical marker of infection approaches that of popular strategies that incorporate various laboratory studies and clinical impression scores," the study authors conclude. "However, the future utility of procalcitonin likely depends on its combination with other clinical data; better discrimination of infants with bacterial and viral infections could potentially lead to more focused evaluations of febrile infants."

The Frederick H. Lovejoy, Jr, MD, Resident Research Fund and an American Academy of Pediatrics resident research grant supported this study. The General Clinical Research Center at Children's Hospital Boston (National Center for Research Resources, General Clinical Research Centers Program, National Institutes of Health grant) assisted with sample processing. The authors have disclosed no relevant financial relationships.

Pediatrics. 2008;122:701-710.

Learning Objectives for This Educational Activity

Upon completion of this activity, participants will be able to:

1. Describe the test performance of procalcitonin for detecting serious bacterial infections in febrile infants up to 90 days of age without apparent bacterial source.

2. Report the optimal cutoff value of procalcitonin to identify febrile infants up to 90 days of age at low risk for serious bacterial infections.

Clinical Context

The prediction of SBIs in febrile infants without apparent source by examination remains challenging. In the November 2003 issue of *Pediatrics*, Galetto-Lacour and colleagues reported that a white blood cell count cutoff value of 15,000 cells/µL had a sensitivity of 52% and specificity of 78% in the identification of serious bacterial infection in febrile infants aged 7 days to 36 months. C-reactive protein has higher sensitivity of 78% and specificity of 91% for detecting SBI in febrile infants, according to Pulliam and colleagues in the December 2001 issue of *Pediatrics*.

Procalcitonin is a new biomarker that is being studied as a diagnostic tool to detect infection. In the August 2007 issue of the *Pediatric Infectious Disease Journal*, Andreola and colleagues found that the area under receiver operating characteristic curve was better for procalcitonin (0.82) and C-reactive protein (0.85) than for white blood cell count (0.71) and absolute neutrophil count (0.74).

This prospective, cohort, observational study of febrile infants up to age 90 days without identifiable source assesses the test performance of procalcitonin in the identification of SBI and the optimal cutoff value of procalcitonin that indicates low risk for SBI.

Study Highlights

- 435 infants who presented to an emergency department for fever of 38.0°C or higher without identifiable bacterial source were enrolled during an 18-month period.
- Exclusion criteria were immunodeficiency, chronic disease, focal bacterial infection except otitis media, vesicoureteral reflux requiring antibiotics, surgery in the prior 7 days except circumcision, and immunizations or antibiotics in the prior 48 hours.
- Routine evaluation included complete blood count with differential; blood culture; urinalysis and urine culture on catheter specimen; cerebrospinal fluid (CSF) cell count, protein, glucose, Gram stain, and culture; chest radiograph if physical examination indicated pneumonia; and stool leukocyte count and culture if indicated.
- Serum procalcitonin levels were measured with an automated high-sensitivity assay.
- Procalcitonin data were not available for 201 infants because of lack of specimen in 30 infants and hemolysis or insufficient quantity in 171 infants.
- Data were available for 234 infants.
- Median age was 51 days.
- Infants with data vs those without data differed in sex (boys, 53% vs 62%), rates of lumbar puncture (84% vs 75%), and rates of definite plus possible SBI (17.9% vs 12.5%).
- Infants were classified as having definite, possible, or no SBI.
- Definite SBI included bacteremia, defined by pathogen in blood culture; UTI, defined by at least 50,000 colony-forming units (CFUs)
Procalcitonin Helps Detect Bacterial Infections in Febrile Infants

Per milliliter of single or dominant pathogen or 10,000 to 49,000 CFU/mL with positive urinalysis; bacterial meningitis, defined by pathogen in CSF culture or bacteremia with CSF pleocytosis; bacterial pneumonia, based on pleural fluid culture or chest radiograph with positive blood or sputum culture; and bacterial gastroenteritis, based on stool culture.

- Possible SBI included UTI, defined by 10,000 to 49,000 CFU/mL of single pathogen with negative urinalysis or at least 50,000 CFU/mL of multiple pathogens; bacterial pneumonia, based on abnormal chest radiograph and no positive blood, sputum, or pleural fluid culture.
- 30 of 234 infants (12.8%) had definite SBI: 4 with bacteremia, 2 with bacteremia and UTI, and 24 with UTI.
- 12 (5.1%) of 234 infants had possible SBI: 5 had pneumonia, and 7 had UTI.

Mean procalcitonin level was higher for definite SBI (2.21 ng/mL; SD, 3.89) and definite plus possible SBI (2.48 ng/mL; SD, 4.59) vs no SBI (0.38 ng/mL; SD, 1.04).
- Mean procalcitonin level for 6 bacteremia cases was 2.52 ng/mL (SD, 2.72; range, 0.25 - 7.3 ng/dL).
- Mean procalcitonin level for UTI was 2.20 ng/mL (SD, 4.3).
- Area under the receiver operating characteristic curve was 0.82 for definite SBI and 0.76 for definite plus possible SBI.
- Optimal procalcitonin cutoff level to detect definite plus possible SBI was 0.12 ng/mL (sensitivity, 95.2%; specificity, 25.5%; negative predictive value, 96.1%; and negative likelihood ratio, 0.19).
- Use of 0.12 ng/mL procalcitonin cutoff value would have detected all 6 cases of bacteremia and misclassified 2 cases of UTI as low risk.
- Study limitations included small sample size, low number of SBI cases, lack of information on duration of fever, and loss of study specimens from hemolysis caused by storage.

Pearls for Practice

- In febrile infants up to 90 days of age without source of the fever by examination, mean procalcitonin levels are higher in cases of definite SBIs and definite plus possible SBIs vs no SBIs.
- In febrile infants up to 90 days of age without source of the fever by examination, a cutoff procalcitonin level of 0.12 ng/mL has a sensitivity of 95.2%, specificity of 25.5%, negative predictive value of 96.1%, and negative likelihood ratio of 0.19 for the detection of definite plus possible SBIs.

Which of the following is most likely to be associated with procalcitonin levels for infectious gastroenteritis?

- Same level for definite, definite plus possible, and no SBIs
- Higher level for definite SBI than for no SBI
- Higher level for no SBI than for definite SBI
- Higher level for no SBI than for definite plus possible SBI

A 45-day-old infant has a temperature of 38.5°C and normal findings on physical examination. As part of the evaluation for SBI, a procalcitonin level is ordered. Which of the following procalcitonin levels is most likely to be the optimal cutoff value in detecting definite plus possible SBIs?

- 0.12 ng/mL
- 1.2 ng/mL
- 12.0 ng/mL
- 120 ng/mL

Instructions for Participation and Credit

There are no fees for participating in or receiving credit for this online educational activity. For information on applicability and acceptance of continuing education credit for this activity, please consult your professional licensing board.

This activity is designed to be completed within the time designated on the title page; physicians should claim only those credits that reflect the time actually spent in the activity. To successfully earn credit, participants must complete the activity online during the valid credit period that is noted on the title page.

FOLLOW THESE STEPS TO EARN CME/CE CREDIT*:

1. Read the target audience, learning objectives, and author disclosures.
2. Study the educational content online or printed out.
3. Online, choose the best answer to each test question. To receive a certificate, you must receive a passing score as designated at the top of the test. Medscape encourages you to complete the Activity Evaluation to provide feedback for future programming.

You may now view or print the certificate from your CME/CE Tracker. You may print the certificate but you cannot alter it. Credits will be tallied in your CME/CE Tracker and archived for 5 years; at any point within this time period you can print out the tally as well as the certificates by accessing "Edit Your Profile" at the top of your Medscape homepage.

*The credit that you receive is based on your user profile.

Target Audience

This article is intended for primary care clinicians, infectious disease specialists, emergency medicine physicians, and other specialists who provide care to febrile infants up to age 90 days without identifiable source.
Goal
The goal of this activity is to provide medical news to primary care clinicians and other healthcare professionals in order to enhance patient care.

Accreditation Statements

For Physicians

Medscape, LLC is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians.

Medscape, LLC designates this educational activity for a maximum of 0.25 **AMA PRA Category 1 Credit(s)**™. Physicians should only claim credit commensurate with the extent of their participation in the activity. Medscape Medical News has been reviewed and is acceptable for up to 350 Prescribed credits by the American Academy of Family Physicians. AAFP accreditation begins 09/01/08. Term of approval is for 1 year from this date. This activity is approved for 0.25 Prescribed credits. Credit may be claimed for 1 year from the date of this activity.

Note: Total credit is subject to change based on topic selection and article length.

AAFP Accreditation Questions

For questions regarding the content of this activity, contact the accredited provider for this CME/CE activity: CME@medscape.net. For technical assistance, contact CME@webmd.net.

Authors and Disclosures

As an organization accredited by the ACCME, Medscape, LLC requires everyone who is in a position to control the content of an education activity to disclose all relevant financial relationships with any commercial interest. The ACCME defines "relevant financial relationships" as financial relationships in any amount, occurring within the past 12 months, including financial relationships of a spouse or life partner, that could create a conflict of interest.

Medscape, LLC encourages Authors to identify investigational products or off-label uses of products regulated by the US Food and Drug Administration, at first mention and where appropriate in the content.

News Author

Laurie Barclay, MD
is a freelance reviewer and writer for Medscape.

Disclosure: Laurie Barclay, MD, has disclosed no relevant financial relationships.

CME Author

Penny Murata, MD
is a freelancer for Medscape.

Disclosure: Penny Murata, MD, has disclosed no relevant financial relationships.

Brande Nicole Martin
is the News CME editor for Medscape Medical News.

Disclosure: Brande Nicole Martin has disclosed no relevant financial information.

Medscape Medical News 2008. ©2008 Medscape

Legal Disclaimer

The material presented here does not necessarily reflect the views of Medscape or companies that support educational programming on www.medscape.com. These materials may discuss therapeutic products that have not been approved by the US Food and Drug Administration and off-label uses of approved products. A qualified healthcare professional should be consulted before using any therapeutic product discussed. Readers should verify all information and data before treating patients or employing any therapies described in this educational activity.

Registration for CME credit and the post test must be completed online.
To access the activity Post Test, please go to: