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Shock is a final common pathway associated with regularly encountered
emergencies including myocardial infarction, microbial sepsis, pulmonary
embolism, significant trauma, and anaphylaxis. Shock results in impaired
tissue perfusion, cellular hypoxia, and metabolic derangements that cause
cellular injury. Although this early injury is often reversible, persistent hypo-
perfusion leads to irreversible tissue damage, progressive organ dysfunction,
and can progress to death [1].

Cardiovascular collapse (shock) is a common life-threatening condition
that requires prompt stabilization and correction. Lambe and coworkers
[2] reported a 59% increase in critically ill patients between 1990 and
1999. National estimates report an increase in potential shock with an esti-
mated 1.1 Americans presenting to emergency departments nationally with
potential shock (requiring emergent resuscitation within 15 minutes). This
marks an estimated increase in emergent resuscitation requirements from
17% (1998) to 22% (2002) [3]. Depending on the etiology, mortality figures
vary from 23% to 75% for some causes [3–11]. The clinical manifestations
and prognosis of shock are largely dependent on the etiology and duration
of insult. It is important that emergency physicians, familiar with the broad
differential diagnosis of shock, be prepared to rapidly recognize, resuscitate,
and target appropriate therapies aimed at correcting the underlying process.
This article focuses on the basic pathophysiology of shock states and reviews
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the rationale regarding vasoactive drug therapy for cardiovascular support
of shock within an emergency environment.

Vasoactive drugs have been used to treat the hemodynamic changes
associated with shock for over 40 years [12]. In the emergency medical
management of patients, vasoactive drug therapy is used to manipulate
the relative distribution of blood flow and restore tissue perfusion. These
agents are classically subdivided, based on their predominant pathway of
activity, into two separate class types: vasopressors and inotropes. Vaso-
pressors modulate vasoconstriction and thereby increase blood pressure,
whereas inotropes increase cardiac performance and thereby improve
cardiac output (CO). Vasopressor and inotropic agents function primarily
through stimulation of adrenergic receptors or through the induction of in-
tracellular processes that mimic sympathetic end points (increased cAMP).
Many of the drugs in use have varied effects because of their mixed receptor
activity. Most of these act directly or indirectly on the sympathetic nervous
system with effects that vary according to the strength of sympathetic recep-
tor stimulus and affinity. Direct-acting drugs operate by stimulating the
sympathetic nervous system receptor, whereas indirect-acting drugs cause
the release of norepinephrine, which produces the effect.

The composite treatment of shock largely depends on correctly identi-
fying the aberrant mechanisms, eliminating the causative agents, and sup-
porting recovery. Vasoactive drugs are used largely to right cardiovascular
imbalances, and the proper selection of one or more agents greatly depends
on a basic understanding of the physiologic mechanisms driving a particular
shock state [12,13].

Shock is a physiologic state characterized by a systemic reduction in tis-
sue perfusion necessary to meet the metabolic needs of the tissues. Hypoper-
fusion results in oxygen debt, occurring as oxygen delivery becomes unable
to meet metabolic requirements [14–16]. This state of oxygen debt is derived
from disruption within the oxygen delivery pathway.

Hypoperfusion and resulting oxygen debt leads to tissue ischemia, gen-
eral cellular hypoxia, and derangements of critical biochemical processes
[4,17] further propagating autonomic dysregulation and organ failure. These
effects may be reversible if the shock state is promptly recognized and
corrected. Recognized hypoperfusion is a time-dependent emergency. This
concept is already established in hemorrhagic-traumatic [18–21], cardiovas-
cular [22–25], septic [26–29], and general critical shock presenting to the
emergency department [30–32]. Efforts to correct shock are largely aimed
at restoring balance to one or all of three main systems: (1) the pump
(CO); (2) the transport system (peripheral circulation); and (3) the transport
medium (blood volume) (Table 1) [4].

Shock may be caused by a primary decrease in CO (cardiogenic-obstruc-
tive shock); vasodilatation (distributive shock); or low circulating blood
volume (hypovolemic shock) (Table 2) [1]. Cardiogenic shock can be further
defined by intrinsic dysfunction caused by myopathies, infarction, acute



Table 1

Categories of shock and primary treatment strategies

1� Therapy Causes of inadequate blood or plasma volume

Volume infusion Hemorrhagic shock Traumatic

Gastrointestinal

Cavitary hemorrhage

Hypovolemic shock Dehydration

Gastrointestinal loss

(vomitus, diarrhea)

Third-spacing caused

by inflammation

(burns, pancreatitis)

1� Therapy Causes of cardiogenic (pump) dysfunction and decreased

cardiac output

Chemical support

with inotropic

agents

Myocardial ischemia Coronary thrombosis

Hypotension with global

hypoxia/ischemia

Cardiomyopathy Myocarditis

Chronic myopathies

(ischemic, diabetic,

infiltrative, congenital)

Late hypodynamic

septic shocka

Structural cardiac damage Ventricular rupture

Acute valvular or papillary

muscle dysfunction

Toxic drug overdosea Calcium channel

blocker overdose

b-blocker overdose

Require correction

of underlying process

or relief of obstructive

processes

Pulmonary embolisma

Cardiac tamponade

Tension pneumothorax

Cardiac arrhythmia Atrial fibrillation with rapid

ventricular response

Supraventicular tachycardia

Ventricular tachycardia

1� Therapy Causes of abnormal vasomotor tone and vasodilation

Early volume

infusion and

chemical support with

vasopressor agents

Early hyperdynamic

septic shocka

Anaphylactic shock

Central neurogenic shock

Toxic drug overdose Tricyclic antidepressants

Opiates

Alpha antagonists

a Denotes mixed physiologic processes that often necessitate mixed chemical support

(inotropes/vasopressors).

Data from Jones AE, Kline JA. Shock. In: Marx, editor. Rosen’s emergency medicine: con-

cepts and clinical practice. 6th edition, vol 1. Philadelphia: Mosby; 2006. p. 42.
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Table 2

Classification of shock and hemodynamic variables

Shock type Heart rate Stroke volume Cardiac output

Systemic

vascular resistance

Cardiogenic Increased Decreased Decreased Increased

Hypovolemic Increased No change

or decreased

No change

or decreased

Increased

Distributive

(spinala)

Increased (normal

or decreaseda)

Increased

(no changea)

Increased Decreased

a Denotes physiologic variation in spinal shock caused by a predominant decrease in sym-

pathetic input.
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valvular dysfunction, and arrhythmias or by extrinsic dysfunction caused by
obstructive disorders, such as pulmonary embolism, constrictive pericardi-
tis, pericardial tamponade, or tension pneumothorax [33,34]. Hypovolemic
shock, caused by a relative or absolute decreased circulating blood volume,
results in a decreased preload that alters stroke volume and leads to a de-
creased CO. Hypovolemic shock can be caused by hemorrhage from
trauma, aneurysm rupture, or gastrointestinal bleeding, or from basic fluid
loss caused by diarrhea, burns, or ‘‘third spacing.’’ Distributive or vasodila-
tory shock results from vascular changes that lead to a decrease in vasomo-
tor tone and a loss of peripheral vascular resistance. There are multiple
subcauses of distributive shock including sepsis, anaphylaxis, toxic shock
syndrome, and central neurologic injury. It is also important to note that
vasodilatory shock is the final common pathway of prolonged and severe
shock of any cause [35].

Pathologic maldistribution of blood flow is hard to measure [7,36] and
shock is hard to define using hemodynamic criteria alone [4,7,14,27,
37–39]. Any set mean arterial pressure (MAP) or cardiac index might define
dysfunction in one individual, yet it might also represent normal physiology
in another [33,36,40]. The identification and treatment of shock is grossly
dependent on surrogate markers and estimations of tissue blood flow
[32,40–42]. Assessment of the major features of shock (eg, hypotension, de-
creased capillary blood flow, oliguria, mental status changes, and acidosis)
should be done in any patient with a critical illness, or who is at risk of de-
veloping shock. Markers of regional perfusion, urine output, and mentation
have not been shown to be superior to markers of global perfusion, such as
blood lactate levels and measures of arterial base excess [4,7,13]. A current
approach to the diagnosis of shock and monitoring of the response to ther-
apy must integrate physical examination findings (eg, confusion, delayed
capillary refill, oliguria); hemodynamic variables (eg, MAP, shock index,
pulse pressure); and global metabolic parameters (eg, lactate, arterial base
excess, mixed venous oxygen saturations) [4,13,32,37–50]. A composite
picture of patient parameters is best used to correct or assess the adequacy
of perfusion.
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Global tissue perfusion and oxygen delivery is determined by blood oxy-
genation and MAP. Oxygen delivery (DO2) is a function of arterial oxygen
content (CaO2) and CO [DO2 ¼ CaO2 � CO � 10]. Arterial oxygen content
is the sum of bound arterial oxygen (Hb� SaO2� 1.38) and dissolved arterial
oxygen (0.0031 � PaO2). PaO2 is usually disregarded because the number is
diminutive. How much oxygen is delivered to the tissues through the
microvasculature depends on how many oxygen-carrying units are present,
how many of those hemoglobin units are effectively carrying oxygen, and
how effectively the heart is working to transport the oxygenated units
[15,16]. CO is the product of heart rate and stroke volume; in turn, stroke vol-
ume depends on preload, myocardial contractility, and afterload (Table 3).

MAP is derived from the product of systemic vascular resistance (SVR)
and CO. SVR is governed by blood viscosity, vessel length, and the inverse
of vessel diameter. SVR and CO are important clinical concepts that distin-
guish the different forms of shock. Consequently, any basic approach to
hypotension should begin with an assessment of the patient’s volume status
and CO. Low CO states are clinically linked to a narrowed pulse pressure,
a rising shock index, and a delayed capillary refill with cool peripheral
extremities [33,34]. Widened pulse pressures with low diastolic pressures,
bounding pulses, warm extremities, and normal capillary refill can be seen
with increased CO states [4,32,42].

In patients with evidence of hypoperfusion and increased CO, a decreased
SVR or a decreased relative volume should be suspected. Conditions that
cause high output and low resistance are classically linked to inflammatory
states. The prototypical high output–low resistance condition is septic
shock, although severe pancreatitis, anaphylaxis, burns, and liver failure
share similar physiologic alterations. Perfusion deficits observed in hyperdy-
namic shock are derived from a complex interaction of humoral and micro-
circulatory processes that result in uneven local regional blood flow and
a derangement of cellular metabolic processes [49]. In patients with
suspected hypoperfusion and clinical evidence of low CO, an assessment
of cardiac volumes and global intravascular volume must be reassessed. His-
torical and physical features often easily differentiate the hypovolemic state
whether caused by hemorrhage (trauma) or volume loss (diarrhea, vomit-
ing). Clinical features, such as elevated jugular venous pulses, peripheral
edema, a cardiac gallop, or pulmonary rales, help to distinguish the hypo-
tensive patient with low CO and high intravascular volumes [7,33,34]. These
patients tend to be cold and clammy because of their increased SVR and
usually have historical features and clinical signs (EKG changes) that help
further differentiate the cardiac origins of shock.
Principles of management

The management of shock first focuses on identifying the underlying cause
and applying some combination of fluid resuscitation, vasoconstrictors,



Table 3

Hemodynamic measurements and physiologic variables

Measurement

Determining

parameters

Formulas/

measurements Normal values

MAP SVR

CO

SBP

DBP

MAP ¼ SVR � CO

MAP ¼ (SBP þ DBP)/2

Normal MAP should be

65 mmHg or greater

SVR Blood vessel

diameter

Blood vessel

length

Blood

viscosity

In a 70-kg person, the resting

SVR is 900–1200 dyn$s/cm5

(90–120 MPa$s/m3)

CO HR

SV

CO ¼ HR � SV In a 70-kg person, a normal

resting CO is approximately

4900 mL/min

SV Preload/EDV

Afterload

ESV

Contractility

EF

SV ¼ EDV � ESV In a 70-kg person, the given

SV is approximately

70 mL at rest

EF SV

EDV

EF ¼ (SV/EDV) � 100% In a healthy 70-kg person,

the SV is approximately

70 mL and the left

ventricular EDV is 120 mL,

giving an ejection fraction

of 70/120, or 58%

Preload Left ventricular

stretch

Relates to EDV

LVEDP

LVEDR

(LVEDP � LVEDR)/2 �
ventricular thickness

Afterload LVESP

MAP

SVR

PP SBP

DBP

PP ¼ SBP � DBP In a 70-kg person,

the resting PP is 40 mm Hg

SI HR

DBP

SI ¼ HR/SBP In a 70-kg person,

a normal SI is !0.5

Abbreviations: CO, cardiac output; DBP, diastolic blood pressure; EDV, end diastolic vol-

ume; EF, ejection fraction; ESV, end systolic volume; HR, heart rate; LVEDP, left ventricular

end diastolic pressure; LVEDR, left ventricular end diastolic radius; MAP, mean arterial pres-

sure; PP, pulse pressure; SBP, systolic blood pressure; SI, shock index; SV, stroke volume; SVR,

systemic vascular resistance.
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inotropic agents, and potentially vasodilators in a coordinated attempt to
right physiologic irregularity, correct perfusion deficits, and maintain
oxygen delivery (Table 4). Clinically, this is achieved by improving blood
pressure and CO through the optimization of preload, augmentation of
SVR, and the increase of cardiac contractility. To achieve these goals,



Table 4
Pharmacologic agents used to support cardiac output and blood pressure

Receptor activity

Vasoactive agent a1 a2 b1 b2 Dopamine Other Clinical effect

Epinephrine þþþþ þþþ(þ) þþþ 0(þ) 0 : in SVR predominates, vasodilator in low dose

:CO by :inotrope and :HR
Ephedrine þþ 0 þþ(þ) þþ 0 : in SVR predominates

Mild :CO by :inotrope
Norepinephrine þþþþ þþþ þþþ 0(þ) 0 :: in SVR predominates because of alpha effects

;CO s/t : in SVR offset by inotrope

:HR at higher doses may limit clinical effectiveness
Phenylepherine þþþ 0 0 0 0 :: in SVR predominates

CO neutral at low doses s/t :venous return offsets

the :SVR effect on CO

At high doses, : in SVR predominates with ;CO
Dopamine

0.5–2 mg/kg/min 0 (þ) þ þ þþ Dopamine Dose 1-:CO by :inotrope

3.0–10 mg/kg/min þ (þ) þþ þ þþ Dose 2-:SVR and :CO by :inotrope and :HR

10–20 mg/kg/min þ(þþ) (þ) þþ(þþ) þ(þ) þþ Dose 3-: in SVR predominates

Dobutamine 0(þ) 0(þ) þþþþ þþþ 0

:HR at higher doses may limit clinical effectiveness

;:SVR

:CO by :inotrope

Minimal stimulation to HR
Isoproterenol 0 0 þþþþ þþþþ 0 ;SVR

:CO by :inotrope and :HR

;SVR often limits utility in shock
Vasopressin 0 0 0 0 0 V1 receptor :: in SVR predominates

Amrinone/milrinone 0 0 0 0 0 PDE inhibition ;SVR

:CO by phosphodiesterase inhibition

0, no effect; þ, minimal receptor stimulation; þþ, mild; þþþ, moderate; þþþþ, strong receptor stimulation; -, debated activity; (), variable effects; :, increase; ;, decrease.

Abbreviations: CO, cardiac output; HR, heart rate; PDE, phosphodiesterase; SVR, systemic vascular resistance. 7
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the physician can use a number of vasoactive agents. Vasopressor agents
largely improve perfusion pressure and preserve regional distribution of
CO through an increase in MAP above autoregulatory thresholds
[12,51]. Vasopressor agents may also improve cardiac preload and increase
CO by decreasing venous compliance and augmenting venous return
[7,12]. Inotropes improve oxygen delivery and CO through an increase
in rate and contractility [13,29,40,52,53].
Receptor physiology

Vasopressors and inotropes are broadly divided into adrenergic agonists
and nonadrenergic agonists. The main categories of adrenergic receptors rel-
evant to vasoactive therapy are the a1-, a2-, b1-, and b2-adrenergic receptors,
and the dopamine receptors. Discussion of nonadrenergic mechanisms
typically revolves around activation of vasopressin-specific receptors, in
particular V1, and the modulation of internal cellular phosphodiesterase
activity.
Alpha-adrenergic receptors
Alpha receptors share a number of general functions including some
vasoconstriction of the veins and coronary arteries [12,51]. a1 Receptor
stimulation exerts a primary effect on smooth muscle with resultant
constriction. In the smooth muscle of blood vessels, the principal effect is
vasoconstriction. a1 activity has been linked to metabolic alterations and
potentially to increased cardiac contractility, although the exact mechanisms
of these activities are unclear [54–56]. Stimulation of postsynaptic a2 recep-
tors causes vasodilatation by endothelial nitric oxide production [51,57]. It is
thought that this mixed constrictive-dilatory alpha activity helps maintain
perfusion balance, particularly within the coronary arteries [58].
Beta-adrenergic receptors
b1 Receptor stimulation primarily affects the heart. b1 Agonism produces
increases in heart rate and contractility, leading to improved cardiac perfor-
mance and output. Heart rate increases are enacted by increased sinoatrial
nodal conduction (chronotropic effect); increased automaticity and conduc-
tion of the ventricular cardiac muscle; and increased atrioventricular nodal
conduction (dromotrophic effect) [59]. Stroke volumes increase as a result of
cardiac muscle contractility (inotropic effect). b2 Receptor stimulation
causes relaxation of smooth muscle. In smooth muscle beds of small coro-
nary arteries, arteries of visceral organs, and arteries of skeletal muscle b2

activation results in vasodilation. Additionally, b2 stimulation results in
mild chronotropic and inotropic improvement, although these effects are
minimal [59].
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Dopaminergic receptors
There are over seven subtypes of dopamine receptor [60,61]. D4 receptors
have been identified in human hearts. Through dopamine receptors, dopa-
mine increases CO by improving myocardial contractility, and at certain
doses increasing heart rate [60]. In the kidney, dopamine acts by D1 and
D2 receptors to stimulate diuresis and naturesis [61]. In the human pulmo-
nary artery D1, D2, D4, and D5 receptor subtypes may account for vasore-
laxive effects of dopamine [62].
Vasopressin receptors
Vasopressin is a peptide hormone whose primary role is to regulate the
body’s retention of water. Vasopressin, or antidiuretic hormone, is released
when the body is dehydrated, causing the kidneys to conserve water (but not
salt), concentrating the urine and reducing urine volume. It also raises blood
pressure by inducing moderate vasoconstriction through its stimulation of
V1 receptors present throughout the vasculature, but most predominantly
within the smooth muscle of peripheral arterioles [63–65]. High-level activa-
tion greatly increases vascular resistance and is a dominant compensatory
mechanism for restoring blood pressure in hypovolemic shock [65]. Under
normal physiologic conditions, V1 stimulated vasoconstriction results in
no net change in blood pressure because of baroreflex activation [64,65].
Vasopressin has also been linked to paradoxical vasodilation that is largely
dependent on the vascular bed type and on the degree of receptor activation
[64–66].
Therapeutic considerations

There are several important concepts to consider when selecting individ-
ual agent-receptor pathways. Many of the agents used to treat shock act on
multiple different receptors and can cause mixed effects, some of which can
be undesirable. Secondly, many of these agents have specific dose-response
curves for which different receptor subtypes are activated at varying dose-
dependent levels. This is particularly challenging when titrating or mixing
these agents. Lastly, the human body uses many autoregulatory functions.
Many of the desired responses (eg, vasoconstriction) can stimulate feedback
responses that might counter the intended effect (increased perfusion). In
this example, stimulated vasoconstriction leads to an increase in SVR and
a resultant increase in MAP. Elevated MAPs can trigger reflexive bradycar-
dia causing a decrease in CO (decreased perfusion). Additionally, increases
in SVR (afterload) can also negatively impact CO, particularly in patients
with weakened or ischemic myocardium. Common complications associated
with vasopressors and inotropic agents include dysrhythmias, myocardial
ischemia, hyperglycemia, and hypoperfusion. With all of these factors in
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mind, the choice of agent should be selective and titrated to the minimal
effective dose to achieve target end points (MAP, urine output, and
mentation).
Specific agents

Epinephrine is a circulating catecholamine hormone that is synthesized
from norepinephrine primarily in the adrenal medulla. It has a full range
of alpha and beta agonistic properties with a host of effects that ultimately
limit the ease of clinical use [67]. Epinephrine’s main limitations are its
potential provocation of dysrhythmias [67,68], potential for myocardial
ischemia, and more profound splanchnic vasoconstriction than other agents
that may cause abdominal organ ischemia [69–72].

In the emergency department, epinephrine is most useful as a primary
agent for the treatment of anaphylaxis and as a secondary agent for the treat-
ment of sepsis and severe bronchospasm. At doses of 2 to 10 mg/min, epineph-
rine’s beta receptor stimulation predominates [67,73]. Epinephrine’s b1

stimulation causes an increase in heart rate (chronotropy) and an increase
in stroke volume (inotrope) with a resultant increase in CO and cardiac
oxygen consumption. At this dose, epinephrine also induces some b2 stimula-
tion that results in vasodilation in skeletal muscle arterioles offsetting some of
its alpha-induced vasoconstriction. The end product of this predominant beta
activity results in an increased CO, a decreased SVR, and variable effects on
MAP [67,73]. At doses above 10 mg/min, alpha receptor stimulation results in
generalized vasoconstriction and an increased MAP mediated through an
increased SVR [67]. At variable doses, epinephrine also stimulates a number
of important metabolic responses and directly stimulates the kidney, which
produces renin. Through activation of the renin-angiotensin system, epineph-
rine indirectly causes additional vasoconstriction.

Ephedrine is a sympathomimetic agent with a structure similar to the
other synthetic derivatives of epinephrine. Ephedrine acts on alpha and
beta receptors with less potency than epinephrine and also stimulates the
release of norepinephrine accounting for additional indirect alpha and
beta effects [73]. Ephedrine’s combined receptor activity causes an increase
in systolic blood pressure and a modest inotropic effect. It has been shown
to improve coronary and cerebral blood flow, but also has been linked to
decreased renal and splanchnic blood flow [73]. Ephedrine is rarely used
in a continuous infusion and its clinical use is mainly limited to treatment
of hypotension associated with spinal anesthesia. Consequently, it is not
likely to be useful in an emergency department setting.

Phenylephrine has pure alpha activity and results in veno and arteriolar
vasoconstriction with minimal direct effects on inotrope or chronotropy
[73,74]. It causes an increase in systolic, diastolic, and MAP and can lead
to reflex bradycardia [73,75]. Phenylephrine has little effect on heart rate
or contractility, so arrhythmia potentiation is minimal. CO may be
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decreased because of a marked increase in SVR (afterload), but most studies
document normal CO maintenance [75,76]. The associated increased oxygen
demand may induce coronary ischemia in vulnerable patients, although this
is largely theoretic. Phenylephrine’s vasoconstrictive effects have been asso-
ciated with decreased renal and splanchnic perfusion [75,76].

The standard starting dose of phenylephrine is 10 to 20 mg/kg/min. In the
emergency department, this agent may be clinically useful as a second-tier
agent for the support of hyperdynamic vasodilatory shock (sepsis) [66]; in
shock caused by central neurologic causes (neurogenic); and in other states
where a low SVR is suspected and CO is not impaired [75]. It also may prove
useful in hypotension caused by tachydysrhythmias because of its ability to
stimulate reflex bradycardia.

Norepinephrine is the primary neurotransmitter of the postganglionic
sympathetic nerves. It acts on both a- and b-adrenergic receptors producing
potent vasoconstriction and a less pronounced increase in CO [66,73]. The
potent vasoconstrictor effects act to increase venous return and improve
cardiac preload. Norepinephrine’s vasoconstriction is primarily seen as
a disproportionate increase in systolic blood pressure over diastolic pressure
that can lead to a reflex bradycardia. This bradycardic response is often
countered by norepinephrine’s mild chronotropic effects, leaving the heart
rate unchanged [73,77]. In low doses (2 mg/min), norepinephrine stimulates
b-adrenergic receptors. In usual clinical doses (O3 mg/min), norepinephrine
stimulates alpha receptors promoting vasoconstriction.

In early theoretic work, norepinephrine was thought to negatively impact
the pulmonary vascular beds causing vasoconstriction and potentiation of
pulmonary hypertension [73], although this has been largely dismissed by
later studies in animal models [78–80]. Like other agents that increase ino-
trope and afterload, norepinephrine increases myocardial oxygen demand
[81]. This is generally offset by a relative perfusion balance created by the
mixed alpha and beta activity, but should be considered in patients with
coronary compromise [73]. Norepinephrine, like other vasoconstrictors,
can induce ischemia. This is of particular concern within the renal [82–84]
and splanchnic vascular beds [12,13,85], where profound vasoconstriction
may cause unintended organ injury. Norepinephrine’s negative effects on
hepatosplanchnic perfusion has drawn great controversy [13,77] and in
recent studies these negative effects have been questioned [70,72,85].

It is important to consider the results of studies in context to the treat-
ment population. In the case with norepinephrine, most of the data available
have been studied in a septic model that because of humoral and microcir-
culation abnormalities is unlike other shock states [12,49]. Several trends
have been uncovered in the use of norepinephrine in septic shock. Norepi-
nephrine has been shown to be more effective at improving blood pressure
[86], has demonstrated mortality benefits over other agents [87], and has
largely been adopted as the first-line agent of choice for the hemodynamic
support of septic shock [12,13,29,66,88–90]. In an emergency department
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setting, norepinephrine should be the agent of choice for treating hypoten-
sion associated with sepsis. It can also serve as an adjunct to other vasodi-
latory conditions, such as anaphylaxis and neurogenic shock, and might
prove useful in states with ventricular dysfunction [4,59].

Dopamine is the immediate precursor of norepinephrine in the catechol-
amine cascade. When administered intravenously, dopamine has a variety of
dose-dependent effects mediated by direct and indirect adrenergic activity.
Directly, dopamine stimulates a- and b-adrenergic receptors and may be
converted to norepinephrine. Indirectly, dopamine stimulates the release
of norepinephrine from sympathetic nerves [59,73,91]. These indirect mech-
anisms and dose-dependent variability make predicting the hemodynamic
effects of dopamine difficult.

At low infusion rates (0.5–2 mg/kg/min), dopamine stimulates D1 recep-
tors resulting in selective vasodilatation of the renal, splanchnic, cerebral,
and coronary vasculature [73,91]. Even at low doses, some beta stimulation
occurs, which may increase MAP and CO. At rates from 2 to 5 mg/kg/min,
dopamine stimulates norepinephrine release and has mixed receptor activity.
Infusions of 5 to 10 mg/kg/min stimulate b1 receptors increasing stroke
volume, heart rate, and CO [73,91]. At doses greater than 10 mg/kg/min, do-
pamine activates both b1 and a-adrenergic receptors [12]. With escalating
doses (O10 mg/kg/min), alpha effects predominate causing vasoconstriction
in most vascular beds [73]. There is extensive overlap, however, especially in
critically ill patients. Dopamine has been shown to produce a median in-
crease MAP of 24% in volume-optimized patients who remain hypotensive.
Stroke volume was the major contributor to increased MAP, with heart rate
contributing to a lesser extent and minimal contribution from SVR [66,85].

Dopamine’s broad range of receptor activity offers primary benefits and
clinical disadvantages. Like other adrenergic agents, concerns over dopa-
mine’s effect on hepatosplanchnic perfusion have been raised [69,85] and
studies have shown that dopamine’s effects may be more profound than
those of other agents [92,93]. Additionally, the renal protective mechanisms
of dopamine have been questioned [93] and ‘‘reno-protection’’ has largely
been rejected [94]. Tachydysrhythmias often limit the clinical predictability
of dopamine [95].

Dopamine is stable in premixed form and in emergency medical applica-
tions; it often is the most readily available vasoactive agent. Either norepi-
nephrine or dopamine is recommended as a first-line agent for the treatment
of septic shock by the Surviving Sepsis Campaign [90]. It also has clinical use
in treating neurogenic and other states where the stimulation of heart rate,
contractility, and the ability to modulate vascular resistance is of benefit.

Dobutamine is a synthetic catecholamine that is viewed primarily as an
inotropic agent. It is predominantly a b1 agonist with only weak alpha
and b2 effects. The selective b1 activity of dobutamine primarily increases
the inotropic effect because of increased stroke volume and heart rate
with a variable effect on blood pressure [66]. The end effect of dobutamine’s
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stimulus response is an increased CO and a decreased SVR that result in
a global reduction in ventricular wall tension, sympathetic cardiac stress,
and myocardial oxygen consumption [96]. Dobutamine’s typical therapeutic
doses range from 2.5 to 10 mg/kg/min.

Dobutamine might be used by the emergency practitioner to augment
inotropic activity and improve perfusion in septic shock patients with global
myocardial dysfunction [90]. It is also a commonly used agent to support
contractility and cardiac decompensation, although its long-term effect on
morbidity has been questioned in congestive heart failure [59].

Isoproterenol, a catecholamine structurally similar to epinephrine, is pri-
marily an inotropic agent that produces b1 and b2 stimulation. Isoproterenol
stimulates inotropic and prominent chronotropic activity that increases
contractility, heart rate, and oxygen consumption [73]. Isoproterenol’s
prominent b2 activity causes vasodilatation and creates the potential to pro-
duce arrhythmias. Both can be limiting factors of its use in shock. Isoproter-
enol is generally used for its chronotropic effects and may be useful in the
treatment of hypotension associated with bradycardia or heart block.

Vasopressin is an endogenous hormone with vasoconstrictive effects
whose relative deficiency has been tied to refractory hypotension in vasodi-
latory shock [97]. There is support for using a low-dose continuous infusion
(0.01–0.03 U/min) in conjunction with other agents to treat refractory vaso-
dilatory shock [12]. Vasopressin’s use in other vasodilatory states like those
seen with profound cardiogenic shock has not been solidified [98]. Its use has
been linked to the reduction of mesenteric and renal blood flow, although
results regarding the effects are conflicting [98]. Many questions remain
unanswered regarding vasopressin’s clinical effect and the Surviving Sepsis
Campaign recommends it not be used as a first-line agent [90].

Amrinone and milrinone are phosphodiesterase-3 inhibitors that lead to
the accumulation of intracellular cAMP, affecting a similar chain of events
in vascular and cardiac tissues seen with b-adrenergic stimulation [99,100].
The end result of this activity produces vasodilation and a positive inotropic
response. These drugs lead to a short-term improvement in hemodynamic
performance and an improvement in hemodynamic variables. Like dobut-
amine, they are used to improve cardiac function and treat refractory heart
failure. These agents are largely limited in shock states because of their vaso-
dilatory properties [99]. Although these drugs have been shown to provide
short-term clinical hemodynamic improvements, studies have largely failed
to translate these into long-term mortality benefits [100–104].
Alternative agents

Glucagon, a polypeptide hormone, in large dose infusion is beneficial in
the treatment of b-blocker overdose, tricyclic overdose, and calcium channel
blocker overdose [105–114]. Glucagon is thought to have its own receptor
that is separate from adrenergic receptors. Stimulation of this receptor



772 ELLENDER & SKINNER
stimulates increased intracellular cAMP, which promotes inotrope and
chronotropy [108,110]. It is generally given as a 5-mg bolus followed by
a 1 to 5 mg/h infusion, which can be titrated up to 10 mg/h to achieve
the desired patient response. High-dose insulin is the most recently proposed
remedy for cardiovascular support in drug toxicity [115–121]. Insulin has an
intrinsic positive inotropic effect and seems to promote calcium entry into
the cells by means of an unknown mechanism. Although the therapeutic
efficiency of high-dose insulin has been effective in animal models, no ran-
domized human trials have been performed [106]. Anecdotally, insulin given
as a 0.5 units/kg intravenous bolus, then as 0.5 to 1 U/kg/h intravenous in-
fusion with dextrose 10% solution, has been shown to be effective in calcium
channel and b-blocker toxicity [106]. Calcium salts have been shown to
increase blood pressure and CO without effecting heart rate by increasing
the intracellular pool of calcium available for release during depolarization
[122–124]. One gram of a 10% solution (10 mL) of calcium chloride admin-
istered as a slow intravenous push has shown some efficacy in treating
b-blocker [122–124] and calcium channel antagonist toxicity [125,126].
Clinical applications

Authors have penned opinions on vasoactive therapy selection for years.
Many of these opinions are based on pharmacology modeling, animal stud-
ies, or limited design studies. One Cochran review [127] and a recent series
review [128] evaluated the data supporting the selection of one vasoactive
drug over another and both produced limited answers. They were able to
find only eight studies that provided randomized, controlled data and based
on the limitations of these data were unable ‘‘to determine whether a partic-
ular vasopressor is superior to other agents in the treatment of shock states’’
[127,128]. It is important to note that most of the evidence available on va-
soactive drugs has been gathered through clinical treatment of hypotension
in very specific shock states. It is beneficial to consider and choose agents
based on specific evidence available for the individual shock state being
treated. Several specific shock states are reviewed (Table 5).
Anaphylactic shock

Anaphylaxis, initiated by an unregulated IgE-mediated hypersensitivity
response [129], is associated with bronchospasm, systemic vasodilation,
increased vascular permeability, and a loss of venous tone [130]. Anaphylac-
toid reactions are clinically indistinguishable responses that are not IgE-
mediated [131]. In this disease, mast cells release histamine, triggering
bronchial smooth muscle contraction, vascular smooth muscle relaxation,
and an increase in the vascular bed capacitance, which is not adequately
filled by the normal circulating blood volume [132]. Platelets are activated



Table 5

Vasoactive drugs for shock states

Shock state First-tier agents Second-tier agents

Anaphylactic shock Epinephrine, 1 mL of 1:10,000 solution (100 mg),

can be given as a slow IV push, then

as a 0.02 mg/kg/min infusion (5–15 mg/min)

Norepinephrine infused at 0.1–1 mg/kg/min (0.5–30 mg/min)

Cardiogenic shock, left ventricular SBP !70, norepinephrine infused

at 0.1–1 mg/kg/min (0.5–30 mg/min)

SBP 70–90, dopamine infused at 15 mg/kg/min

SBP O90, dobutamine infused at 2–20 mg/kg/min

Amrinone, 0.75 mg/kg loading dose, then 5–10 mg/kg/min

(not recommended post-MI)

Milrinone, 50 mg/kg loading dose, then 5–10 mg/kg/min

(not recommended post-MI)

Cardiogenic shock, pulmonary

embolism

Dobutamine infused at 5 mg/kg/min

Norepinephrine infused at 0.1–1 mg/kg/min

Phenylephrine infused at 10–20 mg/kg/min

Hemorrhagic shock Volume resuscitation Dopamine infused at 5–15 mg/kg/min as

a temporizing adjunct

Neurogenic shock Dopamine infused at 5–15 mg/kg/min Norpinephrine infused at 0.1–1 mg/kg/min

Phenylephrine infused at 10–20 mg/kg/min

Septic shock Norepinephrine infused at 0.1–1 mg/kg/min

Dobutamine infused at 5 mg/kg/min

Dopamine infused at 5–15 mg/kg/min

Epinephrine infused at 0.02 mg/kg/min

Toxic drug overdose with shock Norepinephrine infused at 0.1–1 mg/kg/min Phenylephrine infused at 10–20 mg/kg/min

Glucagon given as a 5-mg IV bolus, then

as a 1–5 mg/h infusion

Calcium salts: calcium gluconate, 0.6 mL/kg bolus,

then a 0.6–1.5 mL/kg/h infusion

Insulin started at 0.1 units/kg/h IV and titrated

to a goal of 1 unit/kg/h

Abbreviations: IV, intravenous; MI, myocardial infarction; SBP, systolic blood pressure.
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in this cascade and release platelet-activating factor, which amplifies periph-
eral vasodilation and has a role in coronary and pulmonary artery vasocon-
striction. The combined effects result in a reduction in volume and cardiac
preload, a reduction in inotrope, and the consequent decrease in effective
output. Consequently, hypotension and tissue hypoperfusion ensue.

Death from anaphylactic reactions is most commonly linked to unresolved
bronchospasm, upper airway collapse from edema, or cardiovascular col-
lapse [133]. Shock occurs in 30% to 50% percent of cases [132,133]. Shock
in anaphylaxis shares variable components with hypovolemic shock caused
by capillary fluid leak, distributive shock caused by the loss of vasomotor
tone, and cardiogenic shock caused by inotropic reductions [131–134].
Knowledge of this physiologic distribution is important to the emergency
management of anaphylaxis and specifically to the selection of therapies.
Treatment
Rapid assessment of the patient’s airway and cardiopulmonary condition
should be performed. Pharmacologic therapy for anaphylactic shock is
generally guided by data from observational or animal studies. The balance
of evidence is aimed at reversing the effects of anaphylactic mediators.
Dependent on the severity of presenting symptoms, this generally involves
treatment with intravenous fluids, early antihistamines, bronchodilators,
steroids, and epinephrine [135–137]. Early fluid resuscitation is required to
correct relative volume deficits and restore cardiac preload.

Epinephrine is the vasoactive drug of choice in anaphylactic shock
[136,138,139]. Epinephrine’s catecholamine effects counteract the vasode-
pression, bronchoconstriction, fluid transudation, and cardiac depression
seen in anaphylaxis [138]. It is generally given to patients with early signs
of angioedema, bronchospasm, or hypotension. Early administration is typ-
ically given subcutaneously or intramuscularly. Clinical guidelines [136] rec-
ommend giving 0.3 to 0.5 mL of a 1:1000 (1 mg/mL) solution of epinephrine
intramuscularly into the anterior or lateral thigh because of evidence of
more rapid absorption by intramuscular routes [140]. Repeated doses may
be administered in conjunction with aggressive fluid resuscitation every 3
to 5 minutes based on the clinical severity or symptom response.

For refractory or profound hypotension, epinephrine may be adminis-
tered by continuous infusion at 5 to 15 mg/min and titrated to effect. In
the case of difficult intravenous access, epinephrine (3–5 mL of 1:10:000 di-
lution) can be delivered by an endotracheal tube with desired effects [141].
Supplementary vasoactive agents (dopamine, norepinephrine, or phenyleph-
rine) can be used to alter venous capacitance in persistent hypotension
[138,139]. Additionally, an intravenous bolus of 1 mg of glucagon repeated
at 5-minute intervals, particularly in patients on b-blockers, has been shown
to provide inotropic and chronotropic support in patients with refractory
hypotension and bradycardia [142,143]. Vasopressin has also gained
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attention as a secondary agent for the treatment of severe anaphylaxis that is
unresponsive to epinephrine [144].
Neurogenic shock

Neurogenic shock is caused by the sudden loss of the autonomic nervous
system signal to the smooth muscle in vessel walls and to the nodal centers
of the heart as a result of severe central nervous system (brain or spinal
cord) damage. With the sudden loss of background sympathetic stimulation,
the vessels vasodilate causing a sudden decrease in peripheral vascular resis-
tance (decreased MAP) and the heart experiences a predominant parasym-
pathetic stimulus promoting bradycardia (decreased CO) [145].
Treatment
Treatment of neurogenic shock with aggressive volume resuscitation
and prompt hemodynamic augmentation results in improved outcomes
[146–150]. The weight of evidence defending medical support strategies is
limited and is largely based on case series. The collective experience suggests
that maintenance of MAP at 85 to 90 mm Hg improves spinal cord perfu-
sion and impacts neurologic outcome [150]. Vasoactive agents are typically
started after or concomitantly with volume resuscitation. Typically, agents
with mixed receptor activity and stronger beta agonism (dopamine, norepi-
nephrine) are initiated before the addition of a pure alpha agonist (phenyl-
ephrine) to elevate the MAP and stimulate chronotropy [149,150].
Cardiogenic shock with acute left ventricular dysfunction

Cardiogenic shock is a state of inadequate tissue perfusion caused by car-
diac dysfunction and is most commonly associated with acute myocardial
infarction with left ventricular failure [34]. Cardiogenic shock, defined by
sustained hypotension with tissue hypoperfusion (oliguria, cool extremities)
despite adequate left ventricular filling pressure, complicates approximately
6% to 7% of acute myocardial infarctions and has an associated mortality
of 60% to 90% [151,152]. Support for aggressive therapy has been champ-
ioned by several large trials (GUSTO-1 and SHOCK) [6,153]. The largest
mortality benefits in these trials were seen with early support, timely revas-
cularization, and intra-aortic balloon pump augmentation [6,153,154].
Treatment
Prompt treatment of hypotension and hypoperfusion is essential to the
management of cardiogenic shock. American College of Cardiology–Amer-
ican Heart Association guidelines for the management of patients with ST-
elevation myocardial infarction recommend an empiric intravenous volume
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challenge of 250 mL of isotonic saline be given in patients with suspected
cardiogenic shock when there is no evidence of volume overload (pulmonary
congestion, venous distention, respiratory distress) [155]. The guidelines for
early emergency department management of complicated ST-elevation myo-
cardial infarction caution against vigorous fluid challenges in patients with
extensive left ventricular infarction, particularly the elderly [155]. Aggressive
fluid therapy might be indicated in right ventricular (RV) dysfunction
caused by a RV infarction and is commonly required to compensate for
the venodilation and hypotension associated with inferior myocardial
infarction [33,155].

Sympathomimetic drugs remain first-line agents in the treatment of car-
diogenic shock associated with acute ischemic left ventricular dysfunction
[33,34]. The guidelines generally use systolic blood pressure to guide vasoac-
tive management. In patients with a systolic blood pressure ranging from 70
to 100 mm Hg who are less sick and show no signs of shock, the guidelines
generally recommend an intravenous dobutamine infusion (2–20 mg/kg/min)
be initiated to help support stroke volume and reduce afterload. In shock
states with signs of hypoperfusion, initial therapy should begin with a dopa-
mine infusion (5–15 mg/kg/min) to provide inotropic and vasoconstrictive
support. In profoundly hypotensive patients (systolic blood pressure
!70 mm Hg) norepinephrine is recommended as a 0.5 to 30 mg/min infusion
[155].
Cardiogenic shock with right ventricular dysfunction

RV dysfunction can be classified into impaired RV contractility, RV pres-
sure overload, and RV volume overload. Patients with acutely decompen-
sated RV function, however, often suffer from a combination of all three
entities [156].

RV function is better suited to volume overload than pressure overload
compared with the left ventricle (LV) [157]. The thin-walled RV is compli-
ant, but does not have the myocardial bulk and contractility to overcome
elevated afterload, unless it is conditioned over time to gradual increases
in pulmonary vascular resistance [158]. Depressed RV contractility, second-
ary to RV infarction, cardiomyopathy, and sepsis, leads to dilation of the
normal chamber, impaired relaxation, and subsequent increased end-
diastolic pressures. This causes a shift in the normal contour of the interven-
tricular septum toward the LV and an increase in intrapericardial pressures
that limit both RV and LV filling [159].

RV pressure overload, secondary to pulmonary artery obstruction (pul-
monary, fat, and amniotic fluid embolism), pulmonic stenosis, or pulmonary
hypertension (associated with lung disease hypercarbia and hypoxemia, left
heart disease, chronic thromboembolic disease and acute respiratory distress
syndrome), leads to increased RV wall tension, RV chamber dilatation,
and impaired diastolic and systolic function [160]. With overload, the
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interventricular septum shifts inward on the LV chamber. The increased
wall tension of pressure overload results in increased myocardial oxygen
consumption, which when coupled with decreased coronary perfusion and
decreased oxygen supply can lead to myocardial ischemia or infarction
[161]. Even in compensated states, failure can result from abrupt changes
in pulmonary resistance or increased volumes. All of these pathways for im-
paired RV dysfunction result in a similar cascade of depressed RV CO. This
depressed RV CO leads to decreased LV preload, then depressed LV CO,
and subsequent systemic hypotension. This cascade is further exacerbated
by the dyskinesis of the interventicular septum. Systemic hypotension in
turn lowers coronary perfusion pressure and the vicious cycle termed
‘‘autoaggravation’’ continues to worsen RV dysfunction [162–164].
Treatment
The treatment of RV failure is aimed at disrupting the autoaggravation
cycle. The specific clinical therapies, thrombolysis, percutaneous interven-
tion, and possible surgical interventions are determined by the etiology of
the acutely decompensated RV. Emergency management should primarily
focus on supportive therapy as a bridge to final correction. Determining if
volume is needed in the setting of RV failure can be difficult, because in
all of the settings of RV failure, there is some degree of RV dilatation. Ul-
timately, fluid challenges and monitoring heart rate, blood pressure, cardiac
performance, and urine outputs direct the further management of RV fail-
ure. As with LV failure secondary to myocardial infarction, an initial fluid
challenge may be advocated if frank signs of volume overload are clinically
absent [161,165].

There are no absolute guidelines to direct appropriate use of vasopressors
or inotropes in the setting of acute RV failure. Hemodynamic support often
requires the use of vasopressors and inotropes in addition to volume resus-
citation, or if the RV is deemed volume overloaded vasodilators are
indicated [43,161,166]. Norepinephrine, epinephrine, phenylephrine, dopa-
mine, and vasopressin are vasoactive agents that could be used to offset sys-
temic hypotension that often occurs with RV failure. Increasing MAP and
afterload may seem counterintuitive; however, the RV is perfused by the
coronary arteries in both diastole and systole [167]. Maintaining a pressure
head that increases RV myocardial perfusion can be advantageous in the
setting of increased RV myocardial oxygen demand. The ideal agent
increases systemic vasoconstriction without increasing pulmonary vascular
resistance; however, there are no human data to advocate for one agent
over another. Norepinephrine has been supported in animal models of pul-
monary embolism, which have shown improved survival, CO, and coronary
blood flow with minimal changes in pulmonary vasculature with its use [80].
Epinephrine has been advocated in case-based literature for therapy in
shock complicating pulmonary embolism [168]. Vasopressin has been used
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in low doses to treat milrinone-induced hypotension without detriment to
CO or pulmonary artery pressures [169]. Theoretically, norepinephrine, epi-
nephrine, and dopamine have b2 activity that can lead to decreased pulmo-
nary vascular resistance to differing degrees. This benefit is lost, however,
when alpha and b1 activity targeted to increase CO overpowers the early
b2 effects and increases pulmonary vascular resistance and myocardial
oxygen demand [164]. There are no outcome data to support one agent
over another for hypotension in the setting of RV failure.

There is no selective inotropic agent for the RV. Inotropic support can
augment cardiac contractility by b1 activity (dobutamine-isoproterenol);
phosphodiesterase inhibition (milrinone-amrinone); or calcium sensitization
(levosimendan). There have been recent studies comparing inotropes in LV
failure; however, there are no trials specifically isolating RV failure. The
Levosimendan Infusion versus Dobutamine trial and Calcium Sensitizer
or Inotrope or None in Low-Output Heart Failure trial both demonstrated
increased survival with levosimendan over dobutamine or placebo
[147,170,171]. Levosimendan is a calcium sensitizer. It increases contraction
by increasing sensitivity of troponin C to calcium. The Survival of Patients
with Acute Heart Failure in Need of intravenous Inotropic Support trial,
however, failed to demonstrate a difference in survival between dobutamine
and levosimendan [172]. Additionally, levosimendan, although available in
other countries, is only available as an investigational drug in the United
States.

Although dopamine, dobutamine, and milrinone-amrinone have histor-
ically been used in cardiogenic shock patients (LV dysfunction), there
have not been studies specifically evaluating their use in isolated RV fail-
ure. The use of these agents can neither be supported nor refuted with the
current available evidence for RV dysfunction. Contrastingly, isoprotere-
nol, amrinone, and milrinone have been investigated in animal models
of acute pulmonary embolism and have not been shown to be favorable
[173,174]. Many questions remain unanswered regarding RV support
and there is no clear front-runner for ‘‘agent of choice’’ in this clinical
scenario.
Summary

There are few studies that provide evidence for a particular vasopressor
or inotropic strategy in the early emergency department management of
shock. Most recommendations for vasoactive strategies are largely based
on pharmacodynamic modeling, animal research, empiric experience, and
limited human trials performed in a critical care environment. Despite these
limitations, a basic knowledge of available evidence can help guide a best
practice approach until large, prospective, randomized, and well-conducted
studies are completed. Understanding the background physiology of shock
states and the actions and limitations of individual vasoactive agents can
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help the emergency medicine physician to tailor therapy to specific patient
presentations.
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